
Format Obsolescence: Assessing the Threat and the Defenses

David S. H. Rosenthal
Stanford University Libraries, CA

Abstract
Much of the work in digital preservation has focused
on the perceived threat of format obsolescence. The
standard approach combines tools to validate formats
and collect format metadata, registries preserving for-
mat specifications, and format obsolescence notification
systems. The idea is that when a format becomes obso-
lete a notification will be issued, a converter created from
the specification in the registry, documents in the format
identified by means of the preserved format metadata,
and converted using the converter into a not-yet-obsolete
format.

After a decade and a half of work based on this model
it is time to ask these questions:

• Are current formats becoming obsolete?

• If a current format becomes obsolete, how likely
is this approach to succeed in keeping documents
readable?

• Are there alternative approaches that would cost
less and be at least as likely to succeed?

$Revision: 1.12 $ Copyright c©2010 David S. H. Rosenthal

1 Introduction
Fifteen years ago, Jeff Rothenberg’s seminal article in
Scientific Americanentitled “Ensuring the Longevity of
Digital Documents” drew public attention to the problem
of format obsolescence:

“... digital documents are evolving so
rapidly that shifts in the forms of documents
must inevitably arise. New forms do not nec-
essarily subsume their predecessors or provide
compatibility with previous formats.” [24]

At the time he had many horror stories to draw on, for
example the fate of the Domesday Book application for
the BBC Micro computer [6].

Subsequent work in digital preservation focused
largely on combating this perceived threat of format ob-
solescence, developing a standard approach which com-
bines tools to validate formats and collect format meta-
data [12, 27, 15, 18], registries preserving format spec-
ifications [28, 26], and format obsolescence notification
systems. The idea is that when a format becomes obso-
lete a notification will be issued, a converter created from
the specification in the registry, documents in the format
identified by means of the preserved format metadata,
and converted using the converter into a not-yet-obsolete
format.

Despite all the effort and resources invested in this
standard approach, examples are lacking of content that
has been rescued from format obsolescence in this way.
Indeed, when challenged, proponents of this approach
have failed to identify even one format in wide use when
Rothenberg wrote that has gone obsolete in the interven-
ing decade and a half. If format obsolescence were a
significant threat to the longevity of digital documents
one would have expected at least one outbreak in fifteen
years.

First, this paper asks why, if it was so plausible for
Rothenberg to raise the spectre of format obsolescence, it
has failed to appear. Second, it assumes that despite this
analysis format obsolescence does appear, and examines
the practical details of the standard approach to assess
how likely it is to succeed in rescuing documents in the
doomed format. Third, it looks at an alternative approach
to assess whether it would be more cost-effective.

2 Format Obsolescence
Rothenberg bases his explanation of the threats to the
longevity of digital documents on the example of a CD,
containing documents describing the location of his hy-
pothetical fortune, discovered fifty years later by his hy-
pothetical descendants. The context makes it clear that
the way the documents got on to the CD was via adesk-
top publishingsystem. In 1995, there were many exam-

ples of desktop publishing document formats going ob-
solete, but fifteen years later the current version of Open
Office has support for reading and writing Microsoft for-
mats back to Word 6 (1993), full support for reading
WordPerfect formats back to version 6 (1993) and basic
support back to version 4 (1986).

Rothenberg writes as if incompatibility were the re-
sult of inevitable natural processes, rather like random
genetic mutation. But in fact it is the result of de-
liberate decisions by software developers, who must
weigh the benefits it brings against the costs it imposes.
For widely used infrastructure software the total cost,
summed across the many users, almost always vastly out-
weighs any possible benefits, which typically accrue only
to a few. In fact, developers have a derisive name for the
process that re-implements existing functionality in an
incompatible way; they call it “re-inventing the wheel”.

There are two main reasons why format obsolescence
in digital documents stopped around the time Rothenberg
was writing; maturing markets and the Web.

2.1 Maturing Markets
The first reason lies in the nature of technology markets,
and was explained by a book published the year before
Rothenberg’s article. In “Increasing Returns and Path
Dependence in the Economy” [3] Brian Arthur explains
that these markets exhibit increasing returns to scale,
commonly referred to asnetwork effects. An example
is Metcalfe’s Law; the value of a network goes as the
square of the number of nodes. An immature technology
market is characterized by a large number of competing
products, whose market shares are small and variable as
random factors affect their success. The market matures
when these random factors increase the market share of
one product enough for the network effects to take over;
its market share then rapidly expands and it comes to
dominate the market.

In immature markets, such as desktop publishing was
before 1995, format obsolescence is common because
the product concerned is not widely used enough for the
costs to the small number of users to outweigh the bene-
fits. As the market matures, the winning product has in-
centives to make it easy for users of any competitors with
significant market share to migrate. Their formats do
not go obsolete because they are supported by the win-
ner. The winner’s format does not go obsolete because
it is widely enough used for the costs of obsolescence to
dominate any possible benefits.

Further, once a dominant product has captured a mar-
ket in this way the incentives for innovation invert. Be-
fore market capture, products are driven to innovate as
fast as possible by the idea that each successive inno-
vation will be the one that expands their market share
enough for the network effects to kick in and drive it

to market capture. After market capture, innovation be-
comes risky for the dominant product. It will innovate
as little as possible consistent with retaining its domi-
nant position. Indeed, a well-known and often employed
strategy is for the dominant company to buy new, inno-
vative companies that appear in or near its market to sup-
press their innovation and thus prevent them becoming
a threat. Just as market capture increases the costs of
incompatibility by multiplying the number of users who
bear those costs, it reduces the benefits of incompatibil-
ity by reducing the number of potential new users that
the benefits would attract.

Those who believe that format obsolescence is preva-
lent often point to the evolution of Microsoft’s Office
formats as an example of format obsolescence, but this
argument demonstrates a misunderstanding. The rapid
evolution of formats is another aspect of market capture.
Office is such a dominant product that it cannot grow
its market share. To make it increasingly profitable, Mi-
crosoft must persuade the customers who already have
Office to pay for it again, through purchasing upgrades.
An important technique for doing so is to ensure that, by
default, the new version of Office writes a format that the
previous version cannot read. Thus, once new comput-
ers with new versions of Office arrive, those with the old
version will continually encounter documents they can’t
read without upgrading.

It is important to note that this is an example of for-
mat innovation, not formatobsolescence. Obsolescence
would occur only if the new version could not read files
written by the old version. If this were the case those
with the new version would want to downgrade, the op-
posite of the effect Microsoft intends. A recent example
illustrates how difficult it now is for Microsoft to render
formats obsolete. In 2008, Microsoft announced that a
service pack for Office would remove support for some
very old formats. The public response was so hostile that
it took less than a week for this announcement to be re-
scinded [21].

Thus, the only formats that do go obsolete are those
that failed to gain significant market sharebefore the
market matured. In the nature of things there is very little
of value in these obsolete formats.

2.2 The Web
The second reason is a change in the nature of the doc-
uments themselves. The publishing medium for which
desktop publishing systems were designed was paper.
The design goal of their document format was therefore
preserving the state of the application so that the docu-
ment could later be re-opened by the same application for
further manipulation. It wasn’t transferring information
to readers; that was intended to take place on paper. In
1995, the use of these formats for this transfer was an un-

intended by-product; it typically took place by exchange
of floppy disks or via e-mail.

As Rothenberg’s article appeared, the Web was in its
infancy. Less than 6 months later Stanford’s HighWire
Press started the transition of academic journals to the
Web by putting theJournal of Biological Chemistryon-
line [10]. Less than a year later Netcraft started tracking
the growth of the Web [16]. A bit more than a year later
the Internet Archive started collecting web sites for pos-
terity [11].

The relevance of the Web for this discussion is that the
change from paper to the Web as the medium by which
electronic documents were published meant that the goal
of a document format was no longer that it be written and
subsequently read by thesameapplication, but rather that
it be read by multipledifferentapplications from the one
that wrote it. Note that in this environment the costs are
incurred not when a new, possibly incompatible, format
is addedto the Web browsers, something that happens all
the time via browser “plugins”, but only when support
for an old format isremovedfrom the Web browsers.
The cost of retaining support for old formats in a Web
browser is minimal, so there is no constituency advocat-
ing their removal.

The goal of publishing an electronic document is to
transmit information from an author to readers. Once
the assumption that the author and the readers all use the
same application in the same environment is removed,
the cost of incompatibility becomes almost infinite. The
number of readers is, the author hopes, very large and
the cost to each reader of being unable to read the doc-
ument is also very large. Further, the benefits of incom-
patibility depend on the author being able to persuade the
readers to upgrade their Web browsers not in order that
they may read a new format, which they may easily do
by installing a new plugin, but in order that theynot be
able to read an old format. This would be a tall order for
any marketing department. Thus the switch from private
to public, published documents again increases the costs
and eliminates the benefits of format obsolescence.

2.3 Open Source
An independent argument leading to the same conclusion
starts by asking whether we can construct a scenario in
which a widely-used format becomes obsolete, i.e. doc-
uments in the format can no longer be rendered.

Almost all widely-used formats have at least one open-
source renderer, and most have several. For each of
these formats, the source code for the entire software
stack, from the application such as Open Office (for the
Microsoft Office formats) or ghostscript (for Adobe’s
PostScript and PDF), the Web browser, the operating sys-
tem kernel, the BIOS and even a software emulation of
the Intel hardware, together with all the tools needed to

build a working environment, is written in ASCII, so is
itself immune from format obsolescence.

Further, this source code is carefully preserved in a
range of source code repositories, such as SourceForge.
The developers of the various projects don’t actually rely
on the repositories; they themselves keep regular back-
ups of the repository contents. All the tools needed to
build a working software stack are preserved in the same
way, and regularly exercised (most open source projects
have automatic build and test processes that are run at
least nightly).

As if this wasn’t safe enough, in most cases there are
multiple independent implementations of each layer of
functionality in the stack. For example, at the kernel
layer there are at least 5 independent open source imple-
mentations capable of supporting the entire stack1. As
if even this wasn’t safe enough, this entire stack can be
built and run on many different CPU architectures2. Even
if the entire base of Intel architecture systems stopped
working overnight, in which case format obsolescence
would be the least of our problems, this software stack
would still be able to render the formats just as it always
did, although on a much smaller total number of comput-
ers. In fact, almost all the Windows software would con-
tinue to run (albeit a bit slower) because there are open
source emulations of the Intel hardware architecture.

The structure of open source’s decentralized develop-
ment model makes it very hard for incompatible changes
to be adopted, and the history of the Unix-like environ-
ments demonstrates this. To take one example, in 2008
Kirk McKusick won the IEEE’s Reynolds B. Johnson
award for his 30-year stewardship of the Unix file sys-
tem [29]. During that time he has overseen the growth
of the file system code from 12K to 55K lines of code,
and vast improvments in its performance and reliability.
Through all these changes, over 30 years, as disks have
grown bigger by a factor of nearly a million, there have
been no incompatible changes in either the on-disk for-
mat or the application interface to the file system. In the
unlikely event that a disk written 30 years ago had sur-
vived in working order, the current file system code could
read it perfectly.

What is more, the source code is preserved in source
code control systems, such as CVS and subversion.
These systems ensure that the state of the software as
it was at any point in the past can be reconstructed; not
for the purposes of preservation but as an essential part
of the normal software development process. Since all
the code is handled this way, the exact state of the en-
tire stack at the time that the content in question was
rendered correctly can be recreated. Thus, even if in-
compatible changes had taken place in the open source

1Linux, FreeBSD, NetBSD, OpenBSD and Solaris
2NetBSD supports 16 of them

software stack, perhaps an incompatible change in the
programming language3 they would not prevent its use
in rendering the content.

2.4 Closed Source
But what of the formats for which there is no open source
renderer, only a closed-source binary plugin? Flash is
the canonical example, but in fact there is an open source
Flash player, it is just some years behind Adobe’s current
one. This is very irritating for partisans of open source,
who are forced to use Adobe’s plugin to view recent con-
tent, but it may not be critical for digital preservation.
After all, if preservation needs an open source renderer
it will, by definition, be many years after the original re-
lease of the new format. There will be time for the open
source renderer to emerge.

But even if an open source renderer never emerges and
only a binary plugin is available, and even if subsequent
changes to the software into which the plugin plugs make
it stop working, we have seen in the previous section that
the entire software stack at a time when it was working
can be recreated. So provided that the binary plugin itself
survives, the content can still be rendered.

2.5 Summary
Clearly, there will always be some documents in for-
mats that failed to gain significant market share before
a market matured, and some markets take longer to ma-
ture than others. These arguments do not show that for-
mat obsolescence never happens. What they do show is
that format obsolescence is not a significant threat to the
overwhelming majority of digital content we wish to pre-
serve.

They also allow us to characterize the kinds of format
that are more at risk of obsolescence. These formats will
be:

• In an immature market.

• Unsucessful.

• Proprietary.

• Without an open source renderer or a binary plugin
for an open source environment.

3 The Standard Model
Although these factors make it unlikely that there will
be a significant amount of content in a format that goes
obsolete, we now assume that some format of this kind
has gone obsolete and ask how likely it is that the current
standard model of digital preservation will be effective in
rescuing the small amount of possibly important content
in it.

3These happen occasionally in the open source world, causingma-
jor controversy [?].

The standard model defines the following steps:

• Before obsolescence occurs, a digital format reg-
istry collects information about the target format,
including a description of how content can be iden-
tified as being in the target format, and a specifica-
tion of the target format from which a renderer can
be created.

• Based on this information, format identification and
verification tools are enhanced to allow them to ex-
tract format metadata from content in the target for-
mat, including the use of the format and the extent
to which the content adheres to the format specifi-
cation. This metadata is preserved with the content.

• The format registry regularly scans the computing
environment to determine whether the formats it
registers are obsolescent, and issues notifications.

• Upon receiving these notifications, preservation
systems review their format metadata to determine
whether they hold content in an obsolescent format.

• If they do, they commission an implementor to re-
trieve the relevant format specification from the for-
mat registry and use it to create a converter from the
now-obsolescent target format to some less doomed
format.

• The preservation systems then use this converter
and their format metadata to convert the preserved
content into the less doomed format.

It is interesting to note that the standard model is based
on format migration, a technique of which Rothenberg’s
article disapproves:

“Finally, [format migration] suffers from a
fatal flaw. ... Shifts of this kind make it difficult
or impossible to translate old documents into
new standard forms.” [24]

3.1 Format Registries
Given the characteristics of at-risk formats in Sec-
tion 2.5, format registries face two main obstacles to ful-
filling their part in the rescue of content:

• At-risk formats are unsuccessful, in immature mar-
kets, and so obscure that no binary plugin for an
open source environment survives. This makes it
unlikely that the format registries will hear about
them at all.

• At-risk formats are proprietary, so proprietary that
the open source community failed to obtain an
adequate specification, or to reverse-engineer the
closed format enough to create a renderer. Why
would the registry will be able to obtain an adequate
specification when others had failed to do so?

3.2 Format Metadata
Assuming that, despite these obstacles, the format reg-
istries did notice the target format and obtain enough in-
formation, the next steps are to enhance the format iden-
tification and verification tools, use them on the relevant
content, and preserve the results.

Format identification typically does not require de-
tailed understanding of the format, so that it is very plau-
sible that enhancing these tools to play their part in the
standard model would be feasible. For obscure, unsuc-
cessful formats it is possible that detail beyond identify-
ing the format itself, such as format versions or format
options, might be lacking.

Format verification is more problematic. Building a
useful format verification tool requires as much knowl-
edge about the format as building a renderer. Paradoxi-
cally, in most cases this ismoreknowledge than is in the
format specification. The reason is that, in the real world,
documents rarely conform exactly to the specification for
their format.

An essential design principle of the Internet was enun-
ciated by the late Jon Postel in 1981. It is called Postel’s
Law or the Robustness Principle:

“Be conservative in what you do; be liberal
in what you accept from others.” [19]

Digital preservation is necessarily on the “accept” side of
this law.

It is well-known that much of the HTML on the Web
fails the W3C validation tests. A 2001 study reportedly
concluded that less than 1% of Web content is even valid
SGML [1]. Portico applied the JHOVE validation system
to about 9M PDF articles they received from 68 journal
publishers and reported that it classified a substantial pro-
portion as either “not well-formed” or “well-formed but
not valid” [22].

General observance of Postel’s Law ensures that this
epidemic lack of conformance to standards does not im-
pair the readability of the content. Web browsers, PDF
parsers and so on take great pains to produce legible out-
put from faulty input. This has a number of important
consequences for digital preservation:

• The specification of a format doesnot contain
enough information to construct a usable renderer
for the format once it is obsolescent. It omits the
essential techniques needed to render the substan-
tial proportion of non-conforming content in the
format. These techniques are encoded only in the
source code of the renderers in use before obso-
lescence.Nothing less than preserving the source
code of these renderers will suffice. If the source
of a working renderer is available, it doesn’t matter
whether the format’s specification has survived.

• The use of format validation tools as part of the in-
gest pipeline for digital preservation systems is ei-
ther actively harmful, or it is wasted effort:

– It is actively harmful if content that fails vail-
dation is rejected for preservation. It is over-
whelmingly likely that the rejected content is
in fact fully legible. Use of the validation tool
has prevented preservation of content that oth-
erwise would have been.

– It is wasted effort if, as archives typically re-
port, they run the validation tool but accept
the faulty content anyway. This is what they
would have done had they not run the tool at
all.

• Format classification and validation tools are not
magic, they are software just like the software that
generates the non-conforming content. Thus they
will inevitably make errors. Each of these inevitable
errors has one of two possible results:

– Something bad happens, such as legible con-
tent being rejected for preservation. That
makes the error rate of the tool a very im-
portant number to be minimized at all costs.
There do not appear to be any measurements
of the error rate of these tools, nor any plans
to make such measurements.

– Nothing bad happens. That makes the tool ir-
relevant, since not using it can’t be worse than
using it and having it give wrong answers.

Thus the contrast between the Platonic ideal of for-
mat specifications and the messy but working real world
impels us to two counter-intutive conclusions. In most
cases format metadata is either irrelevant or harmful to
digital preservation, and preserving their specification is
not a means to legibility for obsolete formats.

3.3 Format Notification
The next step in the process is for the format registry, in
one of their regular scans, to notice that the target format
is obsolescent. Given that the target format is so obscure
and proprietary that there is no open source renderer, nor
any binary plugin for an open source environment, and
very little content in it, the probability of a successful
notification is very low. We have already assumed that
despite these factors, the registry was successful in notic-
ing the format and obtaining information about it. The
registry still faces obstacles to a timely notification:

• Clearly, if a widely used format such as PDF were
to become obsolete, the registry could hardly fail
to notice it. But the formats whose obsolescence it

will be called upon to notice are little-used. They
will end their lives in neglect and obscurity. How is
the registry to detect that they are obsolete?

• It is likely that the obsolescence of the format will
be discovered by some reader failing to render some
long-forgotten content. How are they to know that
the correct thing for them to do is to report this to
the registry? Even if they know this, why are they
motivated to do it? Reporting the problem will only
result in the reader’s desire for access being satisfied
after a long delay, if ever.

3.4 Format Converters
On receiving notification from the registry, digital preser-
vation systems are to review their format metadata to de-
termine whether they hold content in the obsolescent for-
mat. If they do they are to commission an implementor to
retrieve the specification for the format from the registry
and create a renderer for it. How likely is this process to
succeed?

The problem facing the implementor is analogous
to, but in some respects more severe than, that of
“clean room” implementations of languages and proto-
cols. These are routine in the IT industry. The goal is
to build a product compatible with a competitor’s us-
ing only public information, such as published specifi-
cations4.

Experience of this process reinforces the conclusion
of Section 3.2 that the specification alone is inadequate.
Implementors also need access to a working product, so
that when they find aspects of the specification that are
obscure or absent, they can experiment on the product
to clarify its behavior. One aspect almost guaranteed to
require this is the behavior of the renderer when faced
with non-conforming content.

The assumption that the format is obsolescent means
that the implementor does not have access to a working
renderer. If a working renderer were available in either
source or binary form, the preservation system could use
it, there would be no need for a new one. The implemen-
tor in our case is thus faced with a significantly harder
task that the “clean-room” implementor, needing to re-
discover the appropriate behavior for non-conforming
content and other obscure casesab initio.

Experience with these “clean-room” implementations
also allows us to estimate the resources required by this
step of the standard model. For example, there are sev-
eral open source implementations of the Microsoft Office
formats. Perhaps the leader among them is Open Office,
whose history [31] reveals a very large investment; it was

4The author has personal experience of this process, being a mem-
ber of the team at Sun Microsystems that produced the first clone of
Adobe’s PostScript language from the published “Red Book” specifi-
cation [8].

originally developed as a commercial product, and its de-
velopment continues to be subsidized by Sun Microsys-
tems as the basis for a commercial product. To achieve
its current functionality has taken a large, salaried team
more than a decade, despite their task being eased by
ready access to Microsoft Office and to other open source
competitors. It is not credible to expect that even this
level of effort could be justified by digital preservation
activities alone, let alone the considerably greater effort
that would have been required had they not had access to
these resources.

Further, the digital preservation world often complains
that even Open Office’s level of fidelity is inadequate.
Many of these criticisms are beside the point; they refer
to inaccuracies in Open Office’s rendering of the latest
Microsoft Office formats. But from the perspective of
digital preservation, the relevant criterion is Open Of-
fice’s rendering of old, in fact obsolete, formats. After
all, the precondition for the task of creating a “clean-
room” renderer is that the formats are so obsolete that
no functional renderer is available. Note that the most
recent case of Microsoft Office format obsolescence was
caused by Microsoft’s deliberate decision to remove sup-
port for old formats [21]. This was so unpopular that it
was immediately rescinded. No-one is arguing for Open
Office to remove support for old formats, and it appears
that even Microsoft’s ability to do so has expired.

Many of the criticisms of Open Office’s fidelity in
rendering Microsoft Office documents relate to layout
changes between the two renderings. These are beside
the point for another reason. The changes are typically
caused by small differences between the fonts available
in Microsoft Office and in Open Office. They exist
not because Open Office incorrectly interprets the Office
document format, nor because the Open Office develop-
ers were incompetent. Fonts, and in particular the font
spacing tables that drive the layout process, are protected
by copyright. If the Open Office developers had copied
the font spacing tables so exactly that there were no lay-
out changes they may well have been breaking the law.

Just because a document format has gone obsolete
does not mean that the fonts used by documents encoded
in that format have gone out of copyright. The imple-
mentor is likely to face even worse intellectual property
hurdles than the Open Office developers did. He will
probably be faced with the orphan font problem; want-
ing to get permission to use a copyright font but being
unable to find the copyright owner to ask for it. The need
to preserve the fonts used by a document as well as the
text motivates the ability of PDF to embed the fonts it
uses into the document itself.

Behind this quest for pixel-perfect rendering lies an
unrealistically black-and-white view of the world. Ren-
derers are software. They all have flaws. Some are better

than others, but none is perfect. If we plot the quality
achieved by a newly created renderer for a format against
the cost of creating it we will get an S curve. A certain
amount of money is needed to get to a barely functional
renderer. Beyond that, quality increases rapidly at first,
but after a while the law of diminishing returns sets in.
Getting from 99% to 99.9% is very expensive; the cost
of getting to 100% is infinite. Emulation of the entire
original hardware and software environment is the only
way to guarantee a pixel-perfect match with the original
rendering. Anything else means that preserved content
is likely to be rendered with even more flaws than the
original.

The only real question is how much to spend to get
to how close a rendering. The example of the Microsoft
Office formats shows that the costs involved are likely to
be far greater than access to the small amount of content
preserved in an obsolete format can possibly justify.

3.5 Summary
Thus at every stage of the process it envisages, the stan-
dard model faces significant obstacles. Although it is
likely that the model could succeed in rescuing content
in a widely used, well documented, open format with ac-
ceptable if not perfect fidelity, it is very unlikely that it
would ever be called upon to do so. For the formats that
are at actual risk of obsolescence, the standard model is
likely to fall at the very first hurdle, being unable to ob-
tain adequate information about the target to perform the
remaining steps. Even if all the obstacles could be over-
come, the cost of doing so is likely to be much higher
than could be justified by continuing access to the small
amount of content in the obsolete format.

4 Alternate Model
Given that substantial fractions of both the R&D and op-
erational budgets for digital preservation are devoted to
aspects of the standard model, and given the unlikely
prospect of these investments paying off in terms of ac-
tual rescued content, it is time to ask whether there is a
more cost-effective alternative model.

In the search for a more cost-effective model three
principles are important:

• Store only essential data.

• Perform only essential tasks.

• Delay performing tasks as long as possible.

4.1 Store Only Essential Data
One of the rare policies on which there is almost univer-
sal agreement among digital preservation systems is this,
the sine qua nonis that the original bits be preserved.
Even systems that intend to perform format migrations

(e.g. [25]) are reluctant afterwards to discard the origi-
nal, pre-migration bits.

It is often said that “bit preservation is a solved prob-
lem”, but at the scales and for the durations needed
in digital preservation this is unfortunately not the
case [20]. Multiple copies need to be stored to enable
recovery from the inevitable failures. Determining how
many copies are needed to achieve a specified probabil-
ity of loss is an unsolved problem; the assumptions made
to render the mathematics tractable are known not to be
true in practice [4]. A conservative approach is to store
more copies than indicated by studies such as Yano’s [32]
that use these assumptions. Equally often one hears that
“storage is free” but, again, at the scale of real digital
preservation and with an appropriate number of copies
this is certainly not true. A long-term study of storage
costs at the San Diego Supercomputer Center shows that
raw media costs represent only about1/3 of total storage
costs [14]. It is unrealistic to base the design of preser-
vation systems on the idea that storage is currently free.

It is true that technological development in terms of
increasing areal density (bits per unit square) has driven
decades of exponential decrease in the cost per byte of
raw disk media [7]. It is also true that technologies for fu-
ture increases in areal density are in hand. But an indus-
try expert has recently pointed out that the business case
for ever-increasing capacity in low-cost 3.5” disk drives
has become very weak [2]. The cost-per-byte curve may
flatten in the near future for business rather than technol-
ogy reasons; the CPU clock speed curve has flattened in
the last few years for analogous reasons. It is unwise to
base the design of preservation systems on the idea that
storage will become free in the foreseeable future.

The question thus becomes what, in addition to the
original bits, is it essential to store? In general, anything
that is the result of running a program taking the orig-
inal bits as input can be discarded, or at least does not
need to be preserved with multiple copies. Examples in-
clude the (often voluminous) output of format identifica-
tion and verification tools. Under what scenario would it
suddenly become impossible to re-run these tools?

It can be argued that, at the scale of major preservation
systems, running any program taking the entire preserved
content as input is a major undertaking. But fixity checks
necessarily require reading the entire preserved content
on a regular basis; other tasks can be combined with the
fixity checks so that the cost of reading the content once
is amortized across all the tasks needing to do so.

4.2 Perform Only Essential Tasks
Which tasks, other than fixity checks, are essential to
preservation? The analysis of Section 2 makes it likely
that the vast majority of the content in a digital preserva-
tion system will never suffer format obsolescence in the

system’s lifetime. Thus any effort invested in preparing
that content for the eventuality will never generate a re-
turn. An example of such wasted effort is collecting more
than minimal format metadata (such as Mime-Type) dur-
ing ingest; besides the fact that it is more data to preserve
that could easily be regenerated from the original bits, it
is unlikely ever to assist in migrating the content in ques-
tion because the need to do so is unlikely ever to arise.

4.3 Delay Tasks As Long As Possible
Delaying even the essential tasks until they are unavoid-
able has two important benefits:

• The time value of money means that even if the cost
to perform a task remains constant, delaying it re-
duces its impact on the system’s overall budget.

• In the information technology marketplace, the cost
to perform a given task has historically dropped
rapidly, often exponentially. At the same time, the
quality with which the task can be performed has
historically risen slowly as bugs were fixed and im-
proved techniques implemented. These effects have
normally been much larger than the interest rates
used to compute the time value of money, greatly
strengthening the case for delay.

In the small proportion of cases in which format mi-
gration becomes necessary, delaying performing it until
the last possible moment, which is when the reader re-
quests access, results in the migration being performed at
the lowest possible cost and with the greatest possible fi-
delity. A technique for doing so in the Web environment,
transparently to the reader, has been demonstrated [23].

4.4 Open Source
Although open source software has deep roots in com-
puting history, in 1995 it was a small niche. Linux barely
worked. The lawsuit between Unix Systems Labs and
BSDi that freed the Unix source code was settled in 1993,
but the details were still secret. Now, open source is a ba-
sic strategy for all but two of the big IT companies.

Historically, the open source community has devel-
oped rendering software for almost all proprietary for-
mats that achieve wide use, if only after a significant
delay. The Microsoft Office formats are a good exam-
ple. Several sustained and well-funded efforts, includ-
ing Open Office, have resulted in adequate, if not pixel-
perfect, support for these formats. The Australian Na-
tional Archives preservation strategy [9] uses these tools
preemptively to migrate content from proprietary for-
mats to open formats before preservation.

Even the formats which pose the greatest problems
for preservation, those protected by DRM technology,
typically have open source renderers, normally released
within a year or two of the DRM-ed format’s release. The

legal status of a preservation strategy that used such soft-
ware, or some software arguably covered by patents such
as MP3 players, would be in doubt. But the efforts of the
copyright owners to suppress these open source renderers
pay tribute to their effectiveness; if they didn’t render the
content there would be no need to suppress them. Un-
til the legal issues are clarified, no preservation system
can make well-founded claims as to its ability to pre-
serve these formats against format obsolescence. How-
ever, in most but not all cases these formats are supported
by binary plugins for open source web browsers. If these
binary plugins are preserved, we have seen that the soft-
ware stack into which they plugged could be recreated in
order to render content in that format.

It is safe to say that the software environment needed
to support rendering of most current formats is preserved
much better than the content being preserved in those for-
mats (Section 2.3). If we ask ”what would have to hap-
pen for these formats no longer to be renderable?” we
are forced to invent implausible scenarios in which not
just all the independent repositories holding the source
code of the independent implementations of one layer
of the stack were lost, but also all the backup copies
of the source code at the various developers of all these
projects, and also all the much larger number of copies
of the binaries of this layer.

The all-or-nothing question that has dominated discus-
sion of digital preservation has been how to deal with
format obsolescence, whether by emulating the neces-
sary software environment, or by painstakingly collect-
ing “preservation metadata” in the hope that it will make
future format migration possible. It turns out thatthe
”preservation metadata” that is needed for a format is
an open source renderer for that format. The open source
community is creating these renderers for reasons that
have nothing to do with preservation. Any format that
has an open-source renderer is effectively immune from
format obsolescence because there is no plausible sce-
nario in which it will stop working in the current envi-
ronment and, if it does, the environment in which it did
work can be re-created. Further, any format that can be
rendered by a binary plugin for an open source environ-
ment can be made immune simply by preserving the bits
of the binary plugin.

For formats that lack an open source renderer, efforts
to assure its future legibility by preserving its specifica-
tion are unlikely to succeed. Resources are better de-
voted now to using the specifications and current access
to a working renderer to remedy the lack of an open
source renderer.

In addition, national libraries should collect and pre-
serve open source repositories such as SourceForge.
They are essential to their efforts to preserve other im-
portant content, such as Web crawls. There are no legal

or technical barriers to preservation; open source licenses
permit all operations needed for digital preservation [17].
And who is to say that the corpus of open source is a
less important cultural and historical artifact than, say,
romance novels?

Of course, it must be admitted that reconstructing the
entire open source software stack is not very convenient
for the eventual reader, and could be expensive. Thus the
practical questions about the obsolescence of the formats
used by today’s readers are really how convenient it will
be for the eventual reader to access the content, and how
much will be spent when in order to reach that level of
convenience.

4.5 Virtual Machines
As we have seen (Section 3.4), even with access to both
specifications and working renderers, efforts to create
open source renderers for formats that are perceived to
be at risk of obsolescence are likely to be unaffordable,
Fortunately, another development unrelated to preserva-
tion provides a cheaper alternative. The preferred preser-
vation strategy in Rothenberg’s article was emulation,
which in 1995 was a rather exotic approach. Since then
virtualization, a relative of emulation, has become an es-
sential part of mainstream IT.

We now have open source implementations of com-
plete emulations of the Intel (e.g. [5, 13]) and other ar-
chitectures. Thus, if we have the original bits for the con-
tent, a renderer, and the operating system environment in
which it ran on one of these architectures we are confi-
dent that we will be able to render the content. The ques-
tion is how to deliver this rendering in a user-friendly
way.

Recent developments make it likely that a very conve-
nient user experience can be delivered at low cost. For
example, it is now possible to deliver an emulation of
the PC architecture in Java to a reader’s browser [13].
A service could easily be constructed to deliver the ap-
propriate member of a time sequence of emulated en-
vironments, using the techniques of the Memento pro-
posal [30]. Services could be layered on this to use the
emulation of the then-current environment to render the
preserved content.

4.6 Summary
The essential components of an alternate model are:

• Preserve the original bits of the content.

• Preserve the bits of the original renderer and its op-
erating environment, to allow the preserved content
to be rendered in an emulation of its original envi-
ronment.

• Preserve the source code of an original open source
renderer and its operating environment, both to al-

low the preserved content to be rendered in a recon-
struction of its original environment, and to form
the basis for a format converter should format mi-
gration be required.

These three components enable a robust, four-fold re-
sponse to the unlikely event of format obsolescence:

• The binary of the original renderer and its operating
environment could be run in an emulation of con-
temporary hardware.

• The original open source renderer and its environ-
ment could be rebuilt from the preserved source
code and run directly on modern hardware.

• The preserved open source renderer could be rebuilt
from the source code and run in a modern environ-
ment.

• The preserved open source renderer could be mod-
ified into a format converter, and run in a modern
environment to generate a temporary access copy in
a less obsolete format.

None of these approaches face difficulties comparable
to those of the standard model.

5 Conclusions
Rothenberg’s article fostered the view, which persists,
that format obsolescence is a common problem that hap-
pens frequently to the majority of formats, including
popular ones. Based on this diagnosis a remedy, the stan-
dard model, was developed that like all systems works
well in some cases and badly in others. The last fif-
teen years have shown that in today’s world the diagno-
sis is wrong; format obsolescence is a rare problem that
happens infrequently to a minority of unpopular formats.
Unfortunately, this means that the cases that do arise are
those for which the standard model works badly, and the
ones for which it works well do not arise. Because the di-
agnosis was, for understandable reasons, wrong the rem-
edy is ineffective.

Fortunately, developments unrelated to digital preser-
vation provide a robust set of techniques for ensuring
the future legibility of digital documents. In practice
most digital preservation systems actually use these tech-
niques while also performing the other, doubtfully effec-
tive, tasks required by the standard model. They preserve
the original bits of their content, and depend on others to
preserve either or both of the source code for the relevant
rendering tools, or binaries of them. If pursued alone,
this approach is cheaper than the standard model for four
reasons; it involves less data, requires fewer tasks, per-
forms them later, and it leverages mainstream IT devel-
opments such as open source and virtualization. If it

were reinforced with systematic preservation of source
code repositories and binaries of renderers with their op-
erating environments, it would be more likely to be ef-
fective. Reinforcing it in this way is cheaper and more
likely to succeed than trying to solve the difficulties of
the standard model.

6 Acknowledgements
Thanks are due to Cliff Lynch, who initially inspired me
to formulate these thoughts, Jeff Rothenberg, for con-
structive criticism, the commentors on the various rel-
evant posts on my blog, and the LOCKSS engineering
team. The opinions expressed, and any errors, are the
author’s own.

References
[1] AMENON. 0.7% HTML validity factor. http:

//blogs.msdn.com/oldnewthing/archive/2004/
12/21/328759.aspx#332719 , Dec. 2004.

[2] A NDERSON, D. Hard Drive Directions. http:
//www.digitalpreservation.gov/news/
events/other_meetings/storage09/docs/2-4_
Anderson-seagate-v3_HDtrends.pdf , Sept. 2009.

[3] A RTHUR, W. B. Increasing Returns and Path Dependence in the
Economy. University of Michigan Press, 1994.

[4] BAKER, M., SHAH , M., ROSENTHAL, D. S. H., ROUSSOPOU-
LOS, M., MANIATIS , P., GIULI , T., AND BUNGALE, P. A Fresh
Look at the Reliability of Long-term Digital Storage. InProceed-
ings of EuroSys2006(Leuven, Belgium, Apr. 2006).

[5] BOCHS PROJECT. Bochs: The Cross-Platform IA-32 Emulator.
http://bochs.sourceforge.net/ , Nov. 2009.

[6] CAM ILEON PROJECT. BBC Domesday.http://www.si.
umich.edu/CAMILEON/domesday/domesday.html ,
2009.

[7] CHRISTENSEN, C. M. The Innovator’s Dilemma: When New
Technologies Cause Great Firms to Fail. Harvard Business
School Press, June 1997.

[8] GOSLING, J., ROSENTHAL, D. S. H., AND ARDEN, M. The
NeWS Book: An Introduction to the Network/Extensible Window
System. Springer, July 1989.

[9] HESLOP, H., DAVIS , S., AND WILSON, A. National Archives
Green Paper: An Approach to the Preservation of Digital
Records. http://www.naa.gov.au/recordkeeping/
er/digital_preservation/Green_Paper.pdf ,
2002.

[10] HIGHWIRE PRESS. About HighWire Press. http://
highwire.stanford.edu/about/ , 2009.

[11] INTERNET ARCHIVE. About Internet Archive.http://www.
archive.org/about/about.php , 2009.

[12] JHOVE. JSTOR/Harvard Object Validation Environment.
http://hul.harvard.edu/jhove/ , Feb. 2009.

[13] JPC. JPC: The Pure Java x86 PC Emulator.http://
www-jpc.physics.ox.ac.uk/ , 2009.

[14] MOORE, R. L., D’AOUST, J., MCDONALD , R. H., AND M I-
NOR, D. Disk and Tape Storage Cost Models. InArchiving 2007
(May 2007).

[15] NATIONAL L IBRARY OF NEW ZEALAND . Metadata Extraction
Tool. http://meta-extractor.sourceforge.net/ ,
July 2007.

[16] NETCRAFT. Web Server Survey.http://news.netcraft.
com/archives/web_server_survey.html , 2009.

[17] OPEN SOURCE INITIATIVE . Open Source Licenses.http:
//www.opensource.org/licenses , 2009.

[18] PHIL HARVEY. ExifTool. http://www.sno.phy.
queensu.ca/ ˜ phil/exiftool/ , Jan. 2010.

[19] POSTEL, J. RFC 793: Transmission Control Protocol.http:
//tools.ietf.org/html/rfc793 , Sept. 1981.

[20] ROSENTHAL, D. S. H. Bit Preservation; A Solved Problem? In
iPRES2008(Sept. 2008).

[21] ROSENTHAL, D. S. H. Format Obsolescence: Right Here
Right Now? http://blog.dshr.org/2008/01/
format-obsolescence-right-here-right.html ,
Jan. 2008.

[22] ROSENTHAL, D. S. H. Postel’s Law.http://blog.dshr.
org/2009/01/postels-law.html , Jan. 2009.

[23] ROSENTHAL, D. S. H., LIPKIS, T., ROBERTSON, T. S., AND

MORABITO, S. Transparent format migration of preserved web
content.D-Lib Magazine 11, 1 (Jan. 2005).

[24] ROTHENBERG, J. Ensuring the Longevity of Digital Documents.
Scientific American 272, 1 (1995).

[25] THE FLORIDA CENTER FORL IBRARY AUTOMATION. DAITSS
Overview. http://www.fcla.edu/digitalArchive/
pdfs/DAITSS.pdf , 2004.

[26] UDFR. Unified Digital Format Registry. http://www.
udfr.org/ , June 2009.

[27] UK NATIONAL ARCHIVES. Digital Record Object Identifica-
tion. http://sourceforge.net/projects/droid/ ,
Feb. 2010.

[28] UK NATIONAL ARCHIVES. The Technical Registry PRONOM.
http://www.nationalarchives.gov.uk/PRONOM/
Default.aspx , Feb. 2010.

[29] USENIX. 2009 IEEE Reynold B. Johnson Information Stor-
age Systems Award.http://www.usenix.org/events/
fast09/award.html , Feb. 2009.

[30] VAN DE SOMPEL, H., NELSON, M. L., SANDERSON, R., BAL -
AKIREVA , L. L., A INSWORTH, S., AND SHANKAR , H. Me-
mento: Time Travel for the Web.http://arxiv.org/abs/
0911.1112 , Nov. 2009.

[31] WIKIPEDIA . OpenOffice.org. http://en.wikipedia.
org/wiki/Open_Office , 2009.

[32] YANO, C. How Many Journal Copies? A Preliminary Report.
Presentation to ALA, June 2008.

