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Abstract
Over the last 12 years the LOCKSS Program at Stanford
has developed and deployed an open source, peer-to-peer
system now comprising about 200 LOCKSS boxes in li-
braries around the world preserving a wide range of web-
published content. Initially supported by NSF, and sub-
sequently by the Mellon Foundation, Sun Microsystems
and NDIIPP, the program has since 2004 been sustain-
able, funded by the libraries using it. The program won
an ACM award for breakthrough research in fault and at-
tack resistance in peer-to-peer systems.

Since it was designed initially for e-journals, the sys-
tem’s design is unusual; it is driven primarily by copy-
right law. The design principles were:

• Minimize changes to existing legal relationships
such as subscription agreements.

• Reinstate the purchase model of paper. Each library
gets its own copy to keep and use for its own readers
as long as it wants without fees.

• Preserve the original, just what the publisher pub-
lished, so that future readers will see all the intel-
lectual content, including the full historical context.

• Make access to the preserved content transparent to
the reader.
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1 Introduction
Over the last twelve years the LOCKSS1 Program at the Stan-
ford Libraries has developed and deployed a free, open source,
peer-to-peer system now comprising about 200 LOCKSS boxes
in libraries around the world preserving a wide range of web-
published content. The impetus for the program came from
Stanford Libraries’ pioneering work in e-journals; in May 1995
their HighWire Press [12] unit unveiled the Web edition of the

1LOCKSS is a trademark of Stanford University.

Journal of Biological Chemistry. The sudden advent and im-
mediate popularity of the Web versions of expensive and impor-
tant academic journals forced an unexpected and unwelcome
transition upon librarians: frompurchasinga copy of the jour-
nal to rentingaccess to the publisher’s copy. While rental sat-
isfied the librarians’ responsibility to current readers, it did not
satisfy their responsibility to future readers. It did not provide
“perpetual access”.

2 Design
One way to satisfy the goal of providing libraries with perpet-
ual access to the e-journal content to which they subscribed
was commonly suggested. This involved the concept of athird-
party archive, which would acquire e-journal content from the
publisher and re-publish it. In addition to subscribing to the
journal itself, libraries would subscribe to the archive. If they
found themselves having to cancel a subscription, they could
apply to the archive to access the archive’s copy of content the
journal had published during the period their subscription was
valid.

This concept was presented as cancellation insurance. But
another way of looking at it was as a second instance of exactly
the problem it was trying to solve. Access to the canceled con-
tent would be provided only as long as the library continued to
subscribe to the archive. This fundamental flaw in the third-
party archive model was compounded by the very significant
legal and business difficulties to which it gave rise.

The nature of technology markets, with increasing returns to
scale [3] or network effects, is to be dominated by a single sup-
plier. Thus it was likely that there would be one such archive
containing the content fromeverypublisher. Publishers were
to be asked to give, or license on non-commercial terms, their
intellectual property assets to this archive, which was both an
actual competitor, in that the funds libraries used to pay their
archive subscription came from the same budget as their sub-
scriptions to the publishers, and apotentialcompetitor, in that it
held and was able to re-publish the content of every publisher.
The negotiations with the publishers leading to an agreement
to provide the archive with content would thus be prolonged,
difficult and expensive2.

2This problem was not to be resolved until the Mellon Foundation
applied its very considerable leverage in 2002.



The LOCKSS Program was started with a “Small Grant for
Exploratory Research” (SGER) from the NSF. Prolonged and
expensive negotiation with lawyers from the publishers was not
simply unattractive, it was unaffordable. The design of the sys-
tem was thus driven by the need to satisfy the demands of both
copyright law (in particular the Digital Millennium Copyright
Act (DMCA) [1]) and the librarians. The original design prin-
ciples were:

• Minimize changes to existing legal relationships such as
subscription agreements.

• Reinstate the purchase model of paper, so that each library
gets its own copy to keep and use for its own readers as
long as it wants without fees.

• Preserve the original, just what the publisher published,
so that future readers will see all the intellectual content,
including the full historical context.

• Make access to the preserved content transparent to the
reader, so that librarians would not need to educate their
readers to take advantage of the system.

These principles led to the key aspects of the original de-
sign [33]:

• Publishers would grant permission for subscribers to col-
lect and preserve the content to which they subscribed by
placing a permission statement on a web page visible only
to subscribers.

• Libraries would collect the content, including the permis-
sion statement, by crawling the publisher’s web site us-
ing their subscription access. This avoided the need to
develop a separate mechanism to determine whether a li-
brary had permission and a subscription for the content.
If they did not they wouldn’t be able to get the content.
And it avoided the need to modify the publisher’s exist-
ing systems, something they were reluctant to do.

• Libraries’ preserved content would act as a proxy for the
publisher’s web site. If the publisher was unable to sup-
ply it, or refused to do so because the subscription was
no longer valid, the preserved content would be supplied.
Otherwise, the publisher’s content would be supplied to
the library’s reader.

• Only the library’s readers would have access to the con-
tent, and the publisher would see all accesses to the con-
tent as if they had been made directly. This ensured that
the system would not add to the risk of content theft, nor
prevent publishers profiting from the hits on their web
pages.

This design led to an unusual opportunity. Clearly, any sys-
tem for long-term digital preservation must be highly fault-
tolerant, and thus replicated. Because each library had to main-
tain its own copy of the content as evidence that it was doing so
with the permission of the publisher, the system as a whole had
many replicas. Instead of the question normally at the heart of
the design of fault-tolerant systems, “how few replicas do we
need?”, the question for the LOCKSS system was “what can we
do with the abundance of replicas to increase fault-tolerance?”.

The obvious next question, too infrequently asked of digital
preservation systems [41], is “against what threats is the con-
tent being preserved?”. These threats would cause the faults
the system must tolerate. Many digital preservation systems
have implicitly adopted the threat model of Jeff Rothenberg’s
influential 1995 article [35]; this has focused attention to an
unwarranted extent on the threat of format obsolescence [31].
The LOCKSS system’s threat model [34] included format ob-
solescence [32] and “bit rot” [30], but was also based in the
experience of:

• Paper research libraries, which regularly encounter at-
tempts by fanatics [43] and governments [25] to suppress
information, and disasters such as fire [2] and flood [21].

• Large computing facilities, whose experience shows that
data loss is frequently caused by operator error [28] and
insider abuse [17].

Libraries in the paper world are used to peer-to-peer relation-
ships, such as inter-library loan and copying. A peer-to-peer ar-
chitecture for the LOCKSS system was thus natural, and essen-
tial to defense against threats such as operator error and insider
abuse. These threats spread via the trust relationships inherent
in centralized, hierarchically controlled systems.

3 Implementation
The initial NSF SGER supported the development of prototype
nodes, called LOCKSS boxes, that formed a peer-to-peer net-
work. Each held its library’s copies of the subscribed content,
which it obtained by crawling the publisher’s web site. The
nodes communicated with each other, locating other copies of
the same content and regularly comparing them, using a peer-
to-peeranti-entropy protocolbased on voting on the message
digest (digital hash) of the content. If, using this protocol, a
node discovered that its copy disagreed with the consensus of
the other nodes, it could request that its copy be repaired from
a node that did agree with the consensus. A node receiving a
repair request would supply the repair only if it remembered
agreeing with the requester as to the content in the past. Thus
the protocol could be used only to repair a previously good
copy obtained from the publisher, not to violate the publisher’s
copyright by obtaining an initial copy from another library. The
prototype was implemented as a long-lived daemon process in
Java.

The prototype was deployed in 2000 to 6 libraries using test
content from HighWire Press journalsScienceand theBritish
Medical Journal, by kind permission of their publishers. The
test program was later roughly doubled in size with funding
from the Mellon Foundation and Sun Microsystems.

Experience with the prototype was encouraging enough that
the Mellon Foundation and the NSF funded the development
of a production system. This was a complete re-write of the
system, incorporating the lessons of the prototype:

• The prototype clearly demonstrated that the LOCKSS ap-
proach of a peer-to-peer distributed digital preservation
system with low-cost nodes at individual libraries was
technically, legally and economically feasible.

• The prototype showed that crawling the publisher’s web
sites was a viable method for collecting the content,



and that it allowed a very faithful representation of the
reader’s experience to be preserved. However, the varia-
tion among publishers and the extent of the detailed con-
trol of the crawling process required to keep relations with
the publisher harmonious, required that publisher-specific
knowledge be encapsulated in a set of Java classes inter-
facing to the rest of the daemon via a “plug-in” interface.

• Adequate reliability required that the nodes in the
LOCKSS network be extremely secure. Administering
systems to this level of security was seen as difficult for
typical library staff [11]. The production system was
packaged as anetwork appliancebased on the security-
conscious OpenBSD operating system, but running from
a read-only CD rather than from software installed on a
read-write hard disk [29]. “Live CDs” like this have be-
come popular.

• The prototype’s anti-entropy protocol used IP multicast,
which turned out to be impractical. It was replaced by
a TCP-based gossip protocol called LCAP (Library Con-
tent Audit Protocol) version 1.

Further research showed that the design of LCAP version 1
was flawed; it was vulnerable to several potential attacks [22],
and it was later discovered that the improved version 2 proto-
col under development to replace it was vulnerable to a related
attack. A team under Prof. Mary Baker at Stanford’s Computer
Science Dept. developed an entirely new approach to tolerat-
ing faults in and attacks against peer-to-peer networks without
requiring central administration or long-term secrets [19, 8],
that exploited the abundance of replicas as the basis of its de-
fenses. For this work they were awarded “Best Paper” at the
2003 SOSP workshop, and an ACM Student Research award.
This research forms the basis for the current, version 3, anti-
entropy protocol although the complete set of defenses has yet
to be fully implemented.

4 Deployment
The production system was deployed in a beta test to 50 li-
braries in 2002, and went in to production in 2004. The number
of LOCKSS boxes in production use is about 200. A LOCKSS
box preserving all the content available for the public network
that libraries use to preserve subscription and open access needs
at least 2 terabytes of storage.

LOCKSS boxes’ ease of use and simple you-scratch-my-
back-I’ll-scratch-yours organizational model proved attractive
in fields other than e-journals. With support from the Library
of Congress’ National Digital Information Preservation Pro-
gram (NDIIPP), a group of libraries in the South-East of the
U.S. came together as the MetaArchive [38] to preserve each
other’s collections of local culture and history. This was the
first Private LOCKSS Network (PLN), a network of nodes sep-
arate from the main, public network open only to members of
a specific organization. PLNs have proliferated since, preserv-
ing many other genres of content, including state records, gov-
ernment documents, and datasets. The largest LOCKSS boxes
in use in PLNs have about 16 terabytes of storage, they are
the nodes in the CLOCKSS network. This is a community-
governed dark archive building comprehensive collections of
content from large and small e-journal publishers. There will

eventually be about 15 nodes in the network scattered across
the globe.

5 Interoperability
There are four aspects of interoperability among digital preser-
vation systems of interest;Content, Metadata, Audit andMod-
ule interoperability.

5.1 Content Interoperability
As technologies evolve and institutions rise and fall, it will at
times be necessary to transfer content from one digital preser-
vation system to another.

LOCKSS boxes contain collections of web content, the re-
sult of web crawls. The standard for representing such col-
lections is WARC files [15], an enhancement of the Internet
Archive’s ARC file format [5], which packs the content and
headers of many URLs into a single large file.

LOCKSS box content can be exported as ARC files in one
of two ways; the LOCKSS box can export the ARC files di-
rectly, or the Heritrix web crawler [23] can crawl the original
web site using a special proxy implemented in the LOCKSS
box. In both cases the resulting ARC file appears as if Heritrix
had crawled the original web site without the involvement of
the LOCKSS box3. Note that the special proxy used by Her-
itrix could be used by any other Web crawler; exactly the same
content can be harvested from the LOCKSS box at exactly the
same URLs where it was originally found. Thus, although it
can use ARC files as an export format, it is in no way depen-
dent on doing so.

LOCKSS boxes can also import content in ARC format di-
rectly. In this case the result is as if the LOCKSS box had
crawled the original web site instead of Heritrix. Content has
been transferred from the Internet Archive’s Archive-It ser-
vice [14] to a PLN run by the University of Rochester. ARC
file import is a special case of LOCKSS boxes’ ability to im-
port packaged content. Variants of this capability are used by
the CLOCKSS program to import e-journal source file content
in the formats used by Elsevier [7] and Springer. Again, al-
though LOCKSS boxes can use ARC as an import format, they
are in no way dependent on doing so.

These mechanisms are being updated to use the standard
WARC format. LOCKSS currently stores web content as in-
dividual files in a POSIX file system. This part of the system
is also being upgraded to store the content in WARC files, in a
way similar to that of the Wayback Machine [13].

5.2 Metadata Interoperability
There are two kinds of metadata of interest for preservation;
formatand other metadata relevant to ensuring the future read-
ability of the content, andbibliographic metadata relevant to
finding the content.

The standard for format metadata for Web content is the
MIME type in the HTTP headers, and additional “magic num-
ber” information in the HTTP payload. LOCKSS boxes pre-
serve both the HTTP headers and the payload for every URL,
and thus have adequate format metadata for rendering.

The LOCKSS approach for format obsolescence is to pre-
serve the original bits and, if necessary, transparently create a

3Except for some additional HTTP headers



temporary access copy of the content in a less-obsolete format
when a reader requests access [32]. There is thus no need to
collect and preserve the output from format identification and
verification tools such as JHOVE [10]; it is in any case doubtful
whether doing so actually contributes to future readability [31].

The widely-accepted Dublin Core standard for bibliographic
metadata is useful but not in practice strict enough to enable in-
teroperability without extensive human intervention [36]. This
is not feasible at the scale involved in preserving e-journals.

LOCKSS boxes are capable of extracting the article-level
bibliographic metadata contained in the Web content they har-
vest. Most e-journal publishers include the DOI and Dublin
Core metadata in the Web articles they publish, some in HTML
meta-tags, some in the text. The LOCKSS plugins contain
publisher-specific code that knows where this information can
be found, how to convert it to a internal standard representa-
tion, and how to relate it to a system-wide database of journal-
and volume-level metadata called the “title database” (TDB).

The German Research Foundation (DFG) is funding LuKII,
a collaboration between the German National Library (DNB),
Humboldt University and the LOCKSS team to investigate the
use of METS to facilitate the metadata aspects of interoperation
between the DNB’s KOPAL system and a LOCKSS PLN run
by Humboldt University [36].

5.3 Audit Interoperability
The requirements for audits of digital preservation systems are
discussed in Section 6.1. Here we simply observe that if two or
more systems claim to be preserving the same content, it would
be useful for them to be capable of performing amutual audit,
proving to each other that they each had a copy of the content
in question, and that their copies were the same. A protocol for
doing so would be valuable; none has so far been standardized.

This process of mutual audit is the heart of the LCAP anti-
entropy protocol. One LOCKSS box calls apoll on some con-
tentC by inviting a number of other boxes holding the same
content and supplying them with a random nonceN1. Invitees,
or voters, each generate a second random nonceN2, compute
the digestH(N1, N2, C) and returnN2, H(N1, N2, C) to
the poller. The poller tallies these votes by comparing the val-
ues they contain for the hash with the voter’s values ofN2 and
C, with the values the poller computes using its value ofC and
the various values ofN2 in the votes4. If the values agree, the
voter has proved to the poller that their copies of the content C
are identical.

The messages in the LCAP protocol are in XML and contain
only opaque string identifiers for the content, hash values and
time stamps. The actions needed to respond to them are simple
and well-defined. These attributes make the LCAP protocol a
suitable candidate for a mutual audit protocol standard.

Detectionof loss or damage to a replica is one half of an
anti-entropy protocol. In the digital preservation literature this
half is usually described as afixity check, and is normally as-
sumed to be accomplished by means of a message digest stored
in associated with the content it refers to. A mismatch between
the stored digest and the stored content indicates damage. But

4The precise details of this protocol and how they defend against
the various possible attacks are described in [19].

is this damage to the content, or to the digest? Insider abuse
or external attack, both realistic threats, could lead to both the
content and the digest being modified so as still to match, so
a match is not actually a guarantee of fixity. Further, either or
both of the content and the digest could be lost. Simple digest
comparisons are not adequate even for internal fixity checks;
cryptographic techniques to ensure the integrity of the digest
are needed.

The other half of an anti-entropy protocol isrepair of any
damage or loss that is detected. Without a repair protocol,
damage will simply accumulate and eventually overwhelm any
replication scheme [4]. The LCAP protocol implements repair
(see Section 3), and can do so in a way that prevents violations
of copyright.

5.4 Module Interoperability
The LOCKSS team hopes shortly to start working, with fund-
ing from the Library of Congress, towards making the core
LCAP version 3 anti-entropy protocol available for reuse by
other systems in the form of a Java library. This work would
initially be targeted towards the problem of auditing content
preserved in cloud storage systems. It will also incorporate
lessons from the LuKII project [36].

6 Lessons

6.1 Audit
Funders pay for digital preservation in the present in the ex-
pectation of receiving value, access to preserved content, in the
future. This business model is analogous to insurance, and like
insurance in the absence of regulation based on auditing would
be open to fraud, abuse and incompetence.

Discussions of how digital repositories should be audited
have focused primarily on ISO9000-style checklists of written
policies. Clearly, these are useful both internally, as models of
good policies, and externally, to distinguish between reposito-
ries that are adhering to current best management practices and
those that are not. It must be noted that audits of this kind are
time-consuming, expensive, and cannot be automated. Their
cost-effectiveness is yet to be established.

Nevertheless, it is also important that repositories containing
digital objects be audited by third-party auditors to confirm that
(a) they contain the digital objects they are supposed to, and
(b) that the objects are undamaged. Even the best-documented
policies do not guarantee these essential attributes, nor will au-
dits of written policies establish that the attributes hold.

Clearly, the idea that a human could audit a system contain-
ing terabytes of data by accessing a few documents and reading
them to see if they “looked OK” is laughable. A successful dig-
ital preservation system must be extraordinarily reliable; keep-
ing a petabyte for a century with a 50% chance that every bit
survives requires a bit half-life roughly 60 million times the age
of the universe. Although the observed reliability of state-of-
the-art storage systems fails to meet this goal by a factor of at
least109, it is still high enough to pose a significant problem
for auditors [30]. They have two possible approaches; they can
samplethe archive’s content or they can conduct afull audit of
the entire content. To detect the low rates of damage actually
observed, let alone the possibility of targeted attacks on partic-



ular objects, in a timely fashion requires a full audit.
Thus, just as the system internally must conduct fixity

checks on every bit of each of its replicas at regular inter-
vals [4], so must external auditors. Since the majority of the
cost of these checks is in the I/O to access the objects [40],
the cost of external audits can be greatly reduced if they can
be combined with the internal fixity checks by accessing the
object once then performing both checks.

Even if the access restrictions on deposited content allowed
it, performing an audit by extracting most or all the repository’s
content and transferring it to a third-party auditor is not feasible
at the scale of current and future repositories. Both the cost [18]
and the time required would be prohibitive. Further, experience
shows that at large scales such mass transfers of digital objects
are themselves subject to errors [42]. These errors would lead
to false negatives, the auditor would report that an object had
been damaged when in fact the copy in the archive was undam-
aged.

On the other hand, trusting the repository to self-audit and
report the results is not adequate. Recent financial scandals
such as Enron [20] and Lehman Bros. [44] show all too clearly
the problems caused by too credulous an auditor. In an environ-
ment where a single data loss incident could destroy a reposi-
tory’s credibility, and thus its business model, the temptation to
cover up data loss is strong. Despite anecdotal reports of such
losses, no repository appears willing to report one. Sugges-
tions [30] for an anonymized incident reporting system similar
to NASA’s Aviation Safety Reporting System [24] have gone
nowhere.

Suggestions are frequently made that third parties audit
repositories using the preserved hashes of digital objects [39].
When temptations to subvert the audit exist, this conventional
use of hashes is inadequate. To understand why, consider
the following example. The auditor knows that the repos-
itory should contain digital objectX and that the hash of
X = H(X) should beY . The auditor asks the repository
whatH(X) is. The repository repliesY . What has this es-
tablished? Merely that the repository knowsH(X). It could
know this without containing a good copy ofX. For example,
it could have ingestedX, computedH(X), storedH(X) and
discardedX. When the auditor asks forH(X), it replies with
the stored value ofH(X). Alternatively, the repository could
search the Web for keywords fromX [27], notice that someone
else had postedX andH(X), and not even bother with all that
ingesting and computing.

Thus there is an apparent dilemma. It isn’t feasible to extract
the content, so the repository has to perform the audit. But if
the repository performs the audit, the result isn’t credible.

The requirements for a third-party auditor of a large digital
repository are thus:

1. The auditor must not trust the repository being audited.
Doing so renders the audit worthless.

2. The auditor must not depend on extracting content from
the repository. Doing so renders the audit unaffordable.

3. The auditor must not depend on processing the content
as it is being ingested into the repository. Since experi-
ence shows that content ingest is a large part of the cost

of preservation, doing so would render the audit unafford-
able. It would also lock that content in the repository into
forever being audited only by the one auditor in place dur-
ing ingestion.

4. The audit must not depend on metadata, such as digests,
about the content being perfectly preserved in a registry.
Doing so turns the registry itself into a repository, which
must itself be audited. In other words, the auditor must be
fault-tolerant.

5. Ideally, the audit checks should be share access to the con-
tent with the repository’s internal fixity checks.

It appears that no existing audit technology satisfies all these
requirements. Some audit technologies are assessed against
them in Appendices A and B.

Section 2 showed that the network effects inherent in digi-
tal publishing made it likely that one digital preservation sys-
tem would dominate the market, and thus that all copies of
most preserved content would reside in a single organization’s
preservation system. If we add the requirement that third-party
audits be possible even in this case, it seems probable that no
possibleaudit technology can satisfy them. Thus, to the obvi-
ous all-eggs-in-one-basket risks of a digital preservation mono-
culture must be added the likely impossibility of performing a
trustworthy audit of how well the mono-culture is performing.

6.2 Transparency
The LOCKSS system was designed to address the problem
that moving Web content somewhere else reduces its value by
breaking the links to it, and by reducing the ranking search en-
gines give it. Because the LOCKSS daemon was designed to
act as a proxy from the original publisher’s web site, not as a
substitute web server, the preserved content remained accessi-
ble at its original URL. Both internal and external links contin-
ued to work without needing to be rewritten. Rewriting links is
time-consuming and error-prone.

The LOCKSS system was transparent to readers, it just made
the content much more durable. The problem was that, pre-
cisely because it was transparent, it did not visibly provide any
value. In fact, if it was installed and configured as originally
designed, only a Web expert could detect that it was doing any-
thing at all. This made it hard to persuade libraries to pay for
it. In order to get paid, the capability for LOCKSS to act as a
substitute Web server, and rewrite the links, had to be added.
This made access to the preserved content not transparent, and
added complexity to the user experience.

The recent Memento proposal [45] addresses this issue in a
more comprehensive way by extending the underlying HTTP
mechanisms rather than, as with proxying or URL rewriting,
trying to evade them.

6.3 Licensing
In many common cases content interoperability is not just a
technical problem. If the content is copyright, and even open
access Web content must be treated as copyright, transferring
it might violate terms of the license agreement under which it
was originally preserved, or the DMCA, or whatever more re-
strictive copyright law might be in force at the time of transfer.



The choice of license is thus important for preservation. Cre-
ative Commons licenses [6] permit all the activities necessary
for preservation including content transfer and should be used if
at all possible. Failing that, transfer to a successor archive with-
out further negotiation should be allowed under the license; the
“orphan works” problem [26] shows that by the time such ne-
gotiations are needed they may no longer be possible.

7 Conclusion
Experience with the LOCKSS system has shown that a dis-
tributed, peer-to-peer system based on collaboration between
libraries is a both a technically and an organizationally vi-
able way to preserve subscription e-journals and other copy-
right content. It has demonstrated content interoperability with
other preservation systems, and work is under way to explore
the other aspects of interoperability.

Fundamentally, digital preservation is a problem in com-
puter, or rather information security. The design and evalua-
tion of digital preservation systems thus requires an adversarial
mindset, a “Black Hat” approach. The lesson for interoperabil-
ity between repositories is that the repository you are interop-
erating with may not be your friend.

A Audit Control Environment
The Audit Control Environment (ACE) [39] claims to imple-
ment third-party audits of digital objects in repositories:

“our methodology allows a third-party independent
auditor to verify the integrity ... of an archived digi-
tal object” [39]

It does so by storing anintegrity tokenassociated with each
digital object in the archive. The token contains the hash of
the object together with cryptographic information sufficient
to detect any corruption of or tampering with the token, using
technology due to Haberet al. [9].

An audit consists of a request from the third-party auditor to
the Audit Manager (ACE-AM) module to:

• evaluate the validity of the integrity token, and if it is valid

• hash the object and compare the result with the hash in
the integrity token,

• report success or failure of the comparison to the auditor
(the Integrity Management System ACE-IMS).

To avoid the need to extract each object to be audited from the
repository and transmit it to the auditor, the Audit Manager runs
inside the repository itself:

“The ACE Audit Manager (ACE-AM) is local to an
archiving node whose main function is to pass in-
formation between the archiving node and the ACE-
IMS. ... It then retrieves the digital object’s integrity
token, computes the hash of the object, and sends
this information to the ACE-IMS.” [39]

As a result, the system as described fails to implement a third-
party audit. The auditor asks the repository to audit itself; it
trusts code it believes (apparently without evidence) is running
there to do so and report the results correctly. The auditor only
receives a message from the repository saying “this object is

good, it hashes toH”5, it has no independent evidence that the
object is in fact good.

Although as described [39, 40] ACE’s Audit Manager runs
in an untrusted environment local to the repository and thus
does not implement a credible third-party audit, the ACE team
also describe [16] a true third-party audit in which the Audit
Manager runs inside the auditor’s trusted environment and each
object to be audited is transferred there. This is feasible for
small collections, but for large collections this requires sam-
pling, rendering the audit unlikely to detect loss or damage at
the rates actually observed 6.1.

Assessing ACE against the requirements of Section 6.1
shows that it does not satisfy any of them:

1. ACE trusts the repository being audited, since the Audit
Manager runs in the repository’s environment.

2. If it is not to trust the repository being audited, it must ex-
tract the entire content from the repository on each audit.

3. ACE must see the content as it is being ingested into the
repository in order to compute the hash in the integrity
token without trusting the repository to do so.

4. ACE depends on the repository preserving metadata, the
integrity token, undamaged indefinitely. ACE is certainly
capable ofdetectingdamage to the token but provides no
mechanism forrecoveringfrom such damage. It is thus
not fault-tolerant.

5. ACE is not able to combine its hashing with the repos-
itory’s internal fixity checks without trusting the reposi-
tory.

B Shah et al.
Shahet al [37] describe a system that implements a third-party
audit of digital objects in a repository without transferring them
to the auditor on each audit. They propose that the repositories
store both the data in encrypted form and the key that encrypted
it6. Each audit must therefore confirm that both the encrypted
data and the key are present and undamaged, but the auditor
must not be able to determine the key.

Simplifying Shahet al. greatly, digital objectX is sent
to the repository in encrypted form together with its key
K. The repository publishes the hash of the encrypted data
H(E(K,X)), and a one-way cryptographic transform of the
keyT (K). The owner of the data contracts with an auditor to
perform regular audits of object in the repository, by sending
it H(E(K,X)) andT (K). The auditor must reliably remem-
ber these values. The auditor initializes the audit process by

5Step 3 in the description of the operations of the Audit Trigger, a
component of the Audit Manager running in the repository, starts:

“If the integrity token is verified to be intact in Step 2,
the Audit Trigger computes a hash of the given object and
compares it to the one in the integrity token.” [39]

It is thus easy to see that the repository could, by extracting the hash
from the integrity token, construct a correct response to the Integrity
Management System without hashing the object, or even havinga copy
of the object to hash.

6There are concerns about the use of encryption for long-termdata
storage. It does not appear essential to this scheme that the data be
stored in encrypted form, only that it be encrypted with its key during
ingest, extraction and processing



obtaining the encrypted objectE(K,X) from the repository.
Note that the auditor does not knowK and cannot invertT ()
to obtain it, so does not knowX.

The auditor computesH(E(K,X)) to confirm that the
repository currently has an undamaged copy ofE(K,X). It
then generates and securely and reliably remembers a set ofN
challenges. Each challenge consists of a random numberR
and the corresponding hashH(R,E(K,X)). It then discards
E(K,X).

On each of the subsequent N audits, the auditor removes a
challenge at random from the set, sendsR to the repository, and
waits for it to respond withH(R,E(K,X)). If this response
matches the challenge, the auditor knows that the repository has
an undamaged copy ofE(K,X). It must then confirm, using
its remembered copy ofT (K), that the repository also has an
undamaged copy ofK. The details of how this is accomplished
without revealingK to the auditor are too complex to describe
here.

After N such audits, the set of challenges will be empty. The
auditor must be re-initialize the process by obtaining the en-
crypted objectE(K,X), generating and remembering a set of
N new challenges, and then again discardingE(K,X).

This is a rigorous third-party audit that requires the auditor to
access the digital object only once in everyN audits, does not
trust the repository being audited and does not reveal the object
to the auditor. It does depend on reliable long-term storage of
secrets (the remaining challenges) by the auditor. Like ACE,
it can be applied in cases where the digital object is stored by
only one repository, although such cases should be deprecated.

Assessing this system against the requirements of Sec-
tion 6.1 shows that it fully satisfies one and partially satisfies
some others:

1. It does not trust the repository being audited.

2. It requires, on average, data equivalent to only1/N of the
repository’s content (E(K,X)) to be extracted per audit.

3. It must see data equivalent to the content (E(K,X)) as it
is being ingested into the repository.

4. It depends on the auditor preserving metadata, the chal-
lenges, undamaged for a period. It is thus not fully fault-
tolerant.

5. It can combine its hashing with the repository’s internal
fixity checks.
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