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Abstract— Peer-to-peer systemsin which the peers are
truly autonomoushavevaluableproperties,including resis-
tanceto certain forms of organizational failur eand legalat-
tack. Unfortunately, they canbevulnerable to malign peers.

In the context of the LOCKSS system, a peer-to-peer
digital preservation system for e-journals, we describe a
set of techniques that enable a large population of au-
tonomous peers to resist attack by a substantial minority
of malign peersendowed with unlimited computational re-
sources.LOCKSS peersareable to detectattacksand alert
the community of peer operators before damagebecomes
irr eversible. Thesetechniquesinclude rate limitation and
making peers“pay” certain costsby demanding proofs of
effort fr om them.

1. INTRODUCTION

We are investigatingways of building systemsfrom
largenumbersof autonomous,unreliable,mutuallysuspi-
ciouspeersthatcansustainhigh probabilitiesof meeting
specifiedservicelevels over long periodsof time. Dur-
ing thesetimes,suchsystemsmustexpectto beattacked
andsubverted. Our initial test-bedfor theseideasis the
LOCKSSTM (Lots Of CopiesKeepStuff Safe) system,
a peer-to-peerdigital preservation systemfor academic
journalspublishedon the Web. An initial version [18]
hasbeenundertestfor severalyearsat about50 libraries
world-wide.

Scientificcommunicationhastransitionedto the Web.
In particular, much peer-reviewed sciencenow appears
only in e-journalform [12]. Academicjournalsarefunded
by universityandotherlibrarianspayinginstitutionalsub-
scriptionrates.Thelibrariansconsiderit partof their job
to preserve accessto therecordof sciencefor futuregen-
erations.Thetransitionto theWebhasmeanta transition
from a purchasemodel,in which librariansbuy andown
acopy of thejournal,to arentalmodel,in whichthey rent
accessto thepublisher’s copy. Rentalprovidesnoguaran-
teeof futureaccess,andlibrariansfeartheworst[15].

The LOCKSS programis implementingthe purchase
model for the Web,providing tools librarianscanuseto
take custodyof, and preserve accessto, web-published

materials.Thesetoolsallow librariesto runpersistentweb
caches(built from low-cost,unreliable,off theshelfhard-
wareandfree,OpenSourcesoftware)that:

� collectmaterialby crawling thee-journalWebsites,
� distributematerialasa proxy cachedoes,to make it

seemto a library’s readersthat the material is still
availableat its original URLs, evenif it is no longer
availabletherefrom theoriginal publisher[19], and

� preservematerialin cooperationwith othercachesin
a peer-to-peernetwork by, at intervals, having sam-
plesof thepeersvotein opinionpollsontheircontent
andtherebydetectandrepairdamage.

We have recentlydesignedand simulatedan entirely
new opinionpolling protocol,whichweplanto useasthe
basisfor the productionLOCKSS system. Despitesig-
nificantdesignconstraints,it shows anencouragingabil-
ity to resistattacksevenby a substantialminority of ma-
lign peersendowed with unlimitedcomputationalpower.
It alsodetectstheseattacksandraisesalarmsto alert the
communityof peeroperatorsbeforeirrecoverabledamage
hasbeendone.

In this paperwe presenta brief descriptionof the de-
sign principleswe use,the opinion polling protocol we
developedusing them, and the variousstrategies adver-
sariescan useto attack it. On this basiswe develop a
researchagendato guidefuturework in thisarea.Thefull
specificationof theprotocolcanbefoundin [14].

2. RELATED WORK

Superficially, theLOCKSSsystemmayappearsimilar
to peer-to-peerstorage systemssuchasFreeHaven [5],
the Eternity Service[2], Oceanstore[13] andIntermem-
ory [11]. In reality, thegoalsof theLOCKSSprogramare
morelimited:

� In P2Pstoragesystems,peerscooperateto storedata,
with thepeersasawholeacceptingresponsibilityfor
storingenoughcopiesto provide robustness.In the
LOCKSSsystemeachpeeris responsiblefor obtain-
ing and storing its own copy of eachdocumentit
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wishesto preserve. Peerscooperateonly to reduce
the
���

cost of preservingtheir copy, by detectingand
repairingany damagecausedby the poor reliability
of low-costhardware.

� Most P2Pstoragesystemsdependon long-termse-
crets, both as a basisfor peer identity and as en-
cryption keys to control accessto the materialthey
store.Long-termsecretsarenot appropriatefor dig-
ital preservation [4]. They arehighly likely to leak
or be forgottenin the long time horizonsfor which
preservationsystemsareintended.

� SomeP2Pstoragesystemsstrivefor anonymity (e.g.,
Free Haven). The DMCA requiresthat LOCKSS
cacheshave permissionfrom the publisherto pre-
serve their copyrighted content,making anonymity
counter-productive.

Althoughit doesnot provide anonymity, theLOCKSS
systemhasmany similaritieswith peer-to-peeranonymity
systemssuch as MorphMix [16], [17] and Tarzan[7].
In both cases,lack of centralcontrol is fundamentalto
achieving thesystem’s goalof resistingapowerful adver-
sary. Thesesystemssharetheneedfor discoveringpeers,
for usingstatisticaltechniquesto detectthe activities of
malign peers,and for limiting the ability of a malicious
adversaryto degradethesystemasawhole.

3. SYSTEM OVERVIEW

Long-termdigital preservation is an unusualapplica-
tion. It hasvery long time horizons,much longer than
themeantimebetweenfailuresof affordableoff-the-shelf
technologies. Libraries and their contentsare subject
to physicalandorganizationalattackby powerful adver-
saries,including governments. It is not realistic to ex-
pectthesystemto survive all suchattacksunaided,but it
shouldhave a high probability of detectingthembefore
irrecoverabledamageis done. The goal of thesystemis
to preventchangeto data,not to expediteit, sothereis no
needfor speed.Therefore,the systemmusthave a high
probability of delivering correctcontenteven undersus-
tainedattack.

TheLOCKSSsystemconsistsof largenumbersof un-
reliable,persistentweb cachescooperatingin a peer-to-
peernetwork. The cachesare installedin libraries in a
wide rangeof countriesandareautonomousandequal;
thereis no centralcontrolor administrationto which they
aresubservient,norareany peersmoreequalthanothers.

The designprinciplesthat have evolved from experi-
encewith this applicationdiffer in almostevery respect
from the conventionalwisdom. We regard this not asa
critique of the conventionalwisdom as appliedto more

conventionalapplications,but asafascinatingopportunity
to exploretheutility of a differentsetof principles:

� Limit the rate of operation: nothing in the sys-
temshouldhappenany fasterthanstrictly necessary,
which ensuresthat thesystemdegradesasslowly as
possible.

� Assumea powerfuladversary: donotplacearbitrary
limits on the assumedadversary’s capabilities. In
particular, assumethat, for example,by the useof
flashworms[20], he canexert enormousefforts for
limited periodsfrom a potentiallyunlimitednumber
of hostaddresses.

� Do not keep secrets for long: do not assumethat
peersarecapableof keepingsecretsfor longerthana
few days.

� Do notdependon peeridentity: with nocentralcon-
trol and no long-termsecrets,peer identity can be
spoofedatlow cost.It mustnotbegivensignificance,
andshouldserve at mostasa hint to helpoperations
proceed.

� Avoid third-party reputation: relying on third-party
testimony asto thebonafidesof otherpeersrenders
apeervulnerableto falseor tamperedtestimony; this
vulnerabilityis furtheraggravatedby thelackof sta-
ble identities.

� Curtail credit accumulation: with neither stable
identitiesnor a trusted“bank,” historiesof pastbe-
havior in the form of reputation or accumulated
credit balancesarenot dependable.“Payment” for
servicesmustconsistof proof of recenteffort.

� Minimizepeerstate: all memoriesin thesystemare
unreliablein our time frames,so the lessstate,and
the shorterthe time for which it hasto be kept, the
better.

� Makeintrusiondetectioninherent: thesystemshould
exploit bimodalbehavior [3] to triggeralarmswhen
the adversaryappliesenougheffort that there is a
substantialrisk of irrecoverabledamage.

Peersusingour opinion polling protocolkeepa refer-
encelist containinga sampleof the peerpopulation. At
intervals they choosea subsetof thepeersin the list and
invite them to take part in a poll. The inviteesexact a
specifiedamountof otherwiseuselesscomputationalef-
fort from the caller of the poll using a memory-bound
function(MBF) [1] schemedueto Dwork et al. [6]. On
receiptof aproof of this effort they:

� nominateasamplingof peersfromtheirreferencelist
for possibleinclusionin thecaller’s referencelist,

� andconstructavotein aseriesof roundseachinvolv-
ing someotherwiseuselessMBF effort andahashof
theresultof this effort with apartof thedocument.
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When votes are complete they are sent to the caller,
who verifies

�
and tallies them to decide the result. If

the votes indicateoverwhelmingdisagreementwith the
caller’s copy of thedocument,thecaller repairshis copy.
If thevotesinsteadindicateoverwhelmingagreement,the
caller assumeshis copy doesnot requirerepair. Results
betweenthesetwo modesindicatecoherentdamagein the
systemandtriggeranintrusiondetectionalarm.Thecaller
also sendsinvitations to the nominatedpeers,computes
the necessaryMBF proofs,andverifies— but doesnot
tally — their votes.

In eachpoll, votersareremovedfrom thereferencelist;
nominatedpeerswhoagreedwith theresultarethenadded
to the list. The effort exertedby the nominatedpeersin
constructingavoteis theirpriceof admissionto, andtheir
“investment”in, the caller’s referencelist. This invest-
ment is important, becausethe protocol requiresthat a
peersupplyrepairsonly to peersin its list, to avoid theft.
Entriesin referencelists timeoutaftera few polls.

By requiringproof of recent,directly-observed invest-
ment,we avoid two hurtful adversarybehaviors: first, we
prevent him from gaining a foothold in a referencelist
with only modestsustainedeffort over time, andsecond,
we preventhim from affectingthesystemto a greaterex-
tent than his recentinvestmentjustifies. Both of these
behaviors are possiblewhen decisionsare basedon in-
put measuredon a scalethat is independentof thesizeof
peers’recentinvestmentin thesystem[21].

Ourassumedadversaryis aconspiracy of malignpeers.
We areappropriatelyconservative for a preservation sys-
tem,assumingfor thepurposeof simulationthatthecon-
spiracy startswhenanimplementationvulnerabilitycom-
mon to a fraction of the peersallows the adversaryto
subvert that fraction of the peersinstantaneouslyat zero
cost. An equivalentscenariowould be that,by threatsor
bribery, theadversarysubvertstheoperatorsof that frac-
tion of the peers. Thereafter, he hasthreestrategies to
choosefrom:

� Thenuisancestrategy attemptsto wastetimeandre-
sourcesat theunsubvertedpeersby raisingalarms.

� Thestealthstrategy attemptsto avoid detectionwhile
changingtheconsensuson thecontentsof thedocu-
ment,by causingpolls to agreeoverwhelminglyona
faulty versionof thedocument.

� Theattrition strategy attemptsto preventpeersfrom
verifying their replicaof thedocumentlong enough
for randomdamageto corrupt it, by calling many
spuriouspolls.

Frustratingthe nuisanceadversaryrequiresboth that
the systemhave a very low naturalrateof falsealarms,
and that the adversaryexert large effort over a long pe-

riod of time to causeanalarm. If it weremerelyenough
thattheeffort bebrief but large,or low but sustained,then
thenuisanceadversarywith aflashwormor sufficientpa-
tiencewouldsucceed.

Frustratingthe stealthadversaryrequiresthat biasing
thesamplingprocesstake largeefforts over long periods,
andthattheinherentintrusiondetectionbeeffective.

Frustratingthe attrition adversaryrequiresthat it take
largeeffortsover longperiodsof timefor theadversaryto
consumeenoughresourcesat unsubvertedpeersto cause
theirpolls to fail.

4. ANALYSIS OF TECHNIQUES

Wedistill our experienceswith thedesignof a peer-to-
peersystemthatresistsmaliciousattacksalongthreeaxes:
memory, effort, andautonomy.

Memoryis persistentstate,suchasreferencelists,opin-
ions aboutotherpeers,statisticson pastlocal operation,
etc.Peersusememoryto understand,from theirown van-
tagepoint, how the systemevolvesover time. However,
relianceon large amountsof memory, or memoryfrom
longago,is risky whenapeer’s own storageis unreliable,
andwhenpeeridentitiescanbespoofedor subverted.

Effort is an instantaneousindication of a peer’s will-
ingnessandability to contribute to the well-beingof the
system.Peersmayexactproofsof effort from eachother
in the processof a transaction;this can limit the trans-
actionratefor bothunsubvertedandmalignpeers.MBF
effort doesnot contributedirectly to thewell-beingof the
systemandthusreducesits ability to deliver service. In
ourdigital preservationcontext this is not significant.

Autonomyis a measureof how independenteachpeer
is within thesystem.If autonomyis low, peeroperations
aredeterminedby informationfrom otherpeersor, in the
limit, from a centralcontroller. This canleadto sophis-
ticatedandefficient behaviors, but it allows anadversary
capableof spoofingor subvertingpeersto have unduein-
fluenceover the operationsof unsubvertedpeers. If au-
tonomyis high, peeroperationsaredeterminedby local
information,or in our caseby local estimatesof thecon-
sensusof the peerpopulation. This skepticismaboutin-
formation from other peerslimits both the ability of an
adversaryto control the behavior of unsubvertedpeers,
yet also the ability of unsubvertedpeersto cooperatein
reactingto exceptionalconditions.

In the restof this section,we describethe techniques
weusein theLOCKSSsystem,we analyzehow they fare
on thethreeaxes,andwe provide reasoningfor, andsim-
ulation evidenceof, their usefulness.Overall, the nature
of ourpreservationapplicationallowsusto tradeeffort for
increasedautonomyandmoderateuseof memory. Weuse
theNarses[10] simulator.
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Fig. 1. Worst-caseeffort exertedby thestealthadversarycapableof
unlimited effort towardsdamagingthe systemin a network of 1000
peers,over 20 simulatedyears.On the left � axis,we graphthepro-
portion of overall systemeffort exertedby the adversary(“relative”
curve). Ontheright � axis,wegraphtheabsoluteeffort exertedby the
adversary(“absolute”curve).

4.1 Rate-limiting

Designersshouldidentify the maximumrateat which
damagecanbeincurredin thesystem.Thismaximumrate
is animportantmeasureof thesystem’s resilienceagainst
adversarieswho cancommit overwhelmingresourcesto
attacks,for shortor long periodsof time. Limiting this
maximumdamagerateis a powerful tool againstattacks,
sinceit canprotectthesystemevenfrom adversarieswith
unlimitedresources.

LOCKSS peerscan limit the rate of damagethey in-
cur becausethey decideautonomouslywhen it is time
to reevaluatetheir state,insteadof watchingthe system
aroundthem for hints. As a result, an adversarywho
wishesto damageapeerthroughtheprotocol(asopposed
to usingphysical,social,or legal means)mustwait until
that peerdecidesto reevaluateits state. Only then can
the adversaryapply his resources,even when thosere-
sourcesareunlimited,to sway thepoll calledby thepeer
andtherebyaffect thepeer’s documentreplica.

Figure 1 shows that the systemlimits adversariesca-
pableof unlimited computationaleffort to applyingonly
a limited amountof it. In a network of 1000peersover
20 simulatedyears,the adversarynever managesto ex-
ert morethan40% of the total systemeffort actuallyex-
pended,which translatesto no more than 65 machine
years. And yet, even when the adversaryinitially sub-
verts30%of thepeers,hecanaddnomorethan5%to the
initial 30%probabilitythata readeraccessesanincorrect
copy beforedetection[14].

Rate-limitingfareshighontheautonomyaxisbut is in-
dependentof necessaryeffort or memory.

4.2 CostlySignaling

A peermustdecidewhetheror not to admitotherpeers
in a systemoperation:if thepeeris calling a poll, it must
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Fig. 2. Changein themeantime betweenLOCKSSpolls, asa func-
tion of thecomputationalpower of theattrition adversary. The � axis
is in logarithmicscale.Thereare1000peersin thesystem.

decidewhich of the votesit receives to use; if the peer
is invited to vote in somebodyelse’s poll, it mustdecide
whetherto vote in that poll or not. The decisionis im-
portantin bothcases.In theformercase,thepeerreeval-
uatesits local statebasedon the consensusof the votes
it accepts;in the lattercase,thepeercommitssignificant
resourcesin producingvotes,so it mustmake sureits re-
sourcesarenotwasted.

LOCKSSpeersusecostlysignalingto helpmake such
decisions.Costlysignalingis communicationthatcarries
a verifiableproof of effort alongwith protocolmessages,
basedonthepremisethatasignalthatwasmoreexpensive
to producemustcomefrom a senderwho is goodto do
businesswith. In thefield of biology, Gintisetal. [9] have
shown thatgroupscanevolvecooperationbasedsolelyon
costlysignalingunderplausibleconditions.

Thetypeof verifiableeffort in ourcostlysignalsiscom-
putation. In the MBF schemewe use[6], thereare two
systemparameters:first, the systemcan set, almostar-
bitrarily, the costof verifying effort; second,the system
cansethow muchmoreexpensive the costof producing
the effort is than verifying that sameeffort. By setting
theseparametersappropriately, we ensurethatwastedef-
fort causedby theattritionadversaryis paidfor with prior
adversary investment. Similarly, we ensurethat unde-
tectablyincorrectvotesareexpensive for the stealthad-
versaryto produce.

Figure2 graphsthechangein theutility of our system,
i.e., thechangein meantime betweenpolls,asa function
of thecomputationalpowerof theattritionadversary. The
longerthetime betweenpolls, thelongerrandomdamage
to a replica remainsundetected.The attrition adversary
can only increasethe meantime betweenpolls signifi-
cantlyif hecommits60nodesor moreto theattack.Using
costly signalingthis way we raisethe barrier to an attri-
tion attack,but not enoughto be safe. Very preliminary
simulationsthattake into accountanode’s timeaswell as
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its effort in oursignalingcoststructuredemonstratemore
encouraging	 results.

Costlysignalingrequireshigheffort, but is independent
of memoryandof autonomy. LOCKSSpeersusecostly
signalingasanoptionthatpermitshigh autonomy, asop-
posedto its alternative, third-partyreputation.

4.3 Reputation

Reputationis ametricof the“trustworthiness”or qual-
ity of apeer, usedby onepeerto decidewhetherandhow
muchto interactwith another. It canbefirst-person, based
solelyonthelocalpeer’sexperience,or third-party, based
on testimony from otherpeers.

Third-partyreputationis theresultof peercollaboration
to maintainthe reputationdatabase,collectively reward-
ing goodbehaviors andpunishingbadbehaviors asthey
are observed by subsetsof the peerpopulation. Third-
party reputation,asa specialcaseof peerstate,is placed
high on thememoryaxis. It is low on theautonomyaxis,
however, becauseit is accumulatedover transactionsthat
do notnecessarilyinvolve thepeerusingit.

To move higheron the autonomyaxis andavoid rely-
ing on the testimony of others,we focuson first-person
reputation.LOCKSSpeersrely only on their own expe-
rience,verifying costlysignalsfrom otherpeers,to popu-
latetheir referencelists. This preventsmalignpeersfrom
cheaplyinflating their own reputationsor degradingthe
reputationsof unsubvertedpeers,but this approachcan
suffer in systemswherethereis a low probability of re-
peattransactionsbetweenany two peers.

4.4 Expiration of Memory

Adversariescantry to populatethereferencelistsof un-
subvertedpeerswith malignpeersto achieve their goals.
By doing so, the nuisanceadversarycancausean alarm
to be raisedfaster, andthestealthadversarycandamage
moredocumentsfor longerbeforedetection.

To prevent this, entriesin the referencelists time out
andareevicted after a few polls. Similarly, after a peer
callsa poll, it removesfrom its referencelist thosepeers
thatparticipatedin thepoll. This approachis particularly
effective againstprudentadversarieswith limited power,
whomanagetheir resourcessoasto launchthemostcost-
effective attack.As aresult,anadversarymustinvestsus-
tainedeffort for aslong ashe wishesto maintaina pres-
encein unsubvertedpeers’referencelists.

Becausememory expiration limits the lifetime of a
peer’sobservations,weplacethetechniqueat thelow end
of the memoryaxis. Becausememoryexpiration results
in higherandsustainedeffort requirementsfor thesystem,
we placethetechniqueat thehigh endof theeffort axis.

4.5 A RegulatedEconomy

We believe a successfulsystemcannothave an unreg-
ulatedeconomy. It is unrealisticto expecta completely
autonomous,unregulatedsystemto be ableto healitself
alwaysunderall circumstanceswithout externalinput. A
systemmayachieve anequilibriumduringnormalopera-
tion, but it is rarefor exceptionalactivities, in ourcasean
attackbasedon acommonvulnerabilityamonga fraction
of the peers,to be handledpurely within the system. In
suchcases(fraudin therealworld), theinterventionof an
externalagent(law enforcementagenciesandthe courts
in therealworld) is necessaryto resolve theproblemand
restorenormaloperation.

LOCKSSpeersusealarmsasindicatorsof exceptional
conditionsin thesystem.A peerraisesanalarmwhen1) it
detectscoherentdamagein thesystem,2) it suspectstam-
peringwith its local network or otherresources,or 3) it
hasbeenunableto participatein thesystemfor a time in-
consistentwith transientnetwork failures.

Aloneor in concert,humanoperatorsrespondto alarms
by identifying theproblemusingtheforensicinformation
thesystemcollectsandby restoringnormaloperation.We
agreewith conventionalintrusiondetectionsystemsthat
attackson a systemcanonly be repelledby cooperation
betweenthesoftwareandthehumansresponsiblefor it.

We classifyour kind of regulatedeconomyashighly,
but not completely, autonomous,becausefor the first
alarmtype,morethana few peersmustinteractto thwart
theattemptsof theadversary. Becausethelattertwo alarm
typesrequiretemporarilystoringobservationsfrom multi-
plesystemoperations,weplacethis techniquein themid-
dle of thememoryaxis.

5. RESEARCH AGENDA

Our investigationsinto the effectivenessof economic
measuresat resistingattackson theLOCKSSsystemare
encouraging. In simulations,the systemresistsseveral
kindsof attackfrom averypowerful adversary. For exam-
ple,with aninitial subversionof 30%of thepeers,anun-
limited adversaryincreasestheworst-caseprobabilitythat
a readerwill accessanincorrectcopy by only 5%. How-
ever, thereis muchmoreto do beforewe understandthe
limits of ourtechniquesor how bestto applythemin prac-
tice. Theprimarytopicsof theLOCKSSresearchagenda
includebetteradversarystrategies,theuseof first-person
reputationto thwartselfishpeers,improvedattritionresis-
tance,andtrade-offs betweenmemoryandeffort.

We have not yet shown our adversarystrategies are
optimal from his perspective. We needto explore other
strategies, measuringthe degradationthey producefor
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giventimeandeffort investedby theadversary, andinves-
tigatew
 aysto prove thatanadversarystrategy is optimal.

We alsobelieve that rememberingfirst-personreputa-
tion for longer could help us tackle certain selfish be-
haviors. For example,althougha peercannotobtain a
repair for a damageddocumentwithout having partici-
patedin otherpeers’recentpolls,theLOCKSSprotocolis
currentlyvulnerableto peerswho participatecorrectlyin
pollsbut neversupplyrepairsto others.Wecouldpenalize
thereputationof suchselfishpeers.

Usingcostlysignaling,we have raisedthebarrierto an
attrition attack,but not enoughto be safe. A LOCKSS
poll begins with a three-way handshake: poll invitation,
followed by a challengefrom the invitee, followed by a
proofof effort from thepoll initiator. Currently, construc-
tion of the initial poll invitation messageis cheap.As a
result, a maliciousadversarycan sendsucha message,
causingapeerto respondandthenwait for aneffort proof
thatmight never come.By takingthis time into account,
in addition to effort, in the designof our signalingcost
structure,we can reducethis kind of cheapattackpath
opento the adversary. Extendingour simulationto in-
cludethesecostshasproducedencouraginginitial results.

Anotherapproachto thwartingtheattritionadversaryis
to combinecostly signalingwith first-personreputation.
Currently, thesignalrequiredof a peerinitiating a poll is
the sameregardlessof whetheror not that peerhashad
any previous interactionwith the invited peers. For ap-
plicationswhererepeattransactionsare frequent,desig-
natingall recently-unseenpeersaspotentiallyuncoopera-
tivecanperhapslimit theadversaryin amannersimilar to
themake-newcomers-paystrategy [8]. Accordingto this
strategy, LOCKSSpeerswould requirea higherpayment
(i.e.,costliersignal)for servicesfromthosefor whomthey
have norecentopinionthanfor thosefor whomthey have
a positive recentopinion. This is anexampleof theneed
to combinereputationandcostlysignaling;neitheris ad-
equateindependently. Theremay well be otherareasin
which thissynergy couldbeexploited.

The trade-off betweenmemory and recenteffort de-
servesinvestigation.Accumulatingmemoryover several
polls mayallow peersto detectlong-termattacksor self-
ish behavior. It would also allow peersto make better
decisionsaboutwhereto deploy their limited resources.
But the longertheperiodover which this history is accu-
mulated,thegreaterthevulnerabilityof thesystemto sud-
densubversionof previouslyunsubvertedpeers,or sudden
changesof tacticsby themalignpeers.Proofof recentef-
fort insteadhelpsusreducethesevulnerabilities.

Finally, we hopeto migrateour techniquesto the de-
ployedLOCKSSsystemover thecourseof thenext year.

As we do so,we will surelylearnmoreaboutthepracti-
cality of our ideasfor resistingattackin realsystems.
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