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Abstract

Opinion Polls can be used as a means to reach weak agreement, an idea
introduced by the LOCKSS system [1]. In this paper we investigate a set
of protocols that achieve data resilience for the long term using a peer-to-
peer network, where mutually untrusted peers are loosely organized. Peers
use Opinion Polls to heal corrupted copies of data items instead of conven-
tional methods that use consensus algorithms or cryptography to sign data.
We give a brief overview of how LOCKSS performs Opinions, improve the
current algorithms and evaluate our protocols in terms of their performance
and security against adversary attacks.

1 Introduction

The conventional approach to digital information preservation is based on a central
authority. The central authority may be the author, or publisher of the information.
In any case, the central authority is the trusted party for providing an authentic
copy of the information. To verify whether a given copy is authentic or not does
not require the central authority to be online. Instead, a digital signature (of the
central authority) can be used by anyone to check the authenticity.

The central authority model faces a number of difficult management problems
for long term survivability. The central authority may not survive. More specif-
ically, the keys used to produce the digital signature need repeated updating over
time, see [2] for a detailed discussion.

Much work has been done in data replication mechanisms, which are used to
provide availability in data access. Data preservation, on the one hand, is a simpler
problem - the data does not change, it is only to be preserved. Data resilience is a
different problem however because we have to consider in addition to mechanical
faults (that corrupt a copy) malicious attacks by adversaries as well.

Many peer-to-peer systems have been proposed recently [3], [4], [5] that by and
large, are designed to provide decentralized data storage and access. Resilience is
not yet a concern by such efforts.
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Recently, the LOCKSS system [1] proposed a decentralized approach for pre-
serving electronic journals by libraries. More abstractly, this approach can be con-
sidered for providing long term data resilience for any kind of digital information.
In this approach, the trusted central authority is replaced by a large number of peers
who all hold a copy of the same data item. Each peer alone is not trust-worthy. Ev-
ery peer regularly forms Opinion Polls and consults with other peers to check the
correctness of the local copy of the data item. If we assume the majority of the
peers are well-behaving, the question is whether we can trust the opinion of the
peer population as an alternative to the central authority.

In the fault-tolerance literature, the classic byzantine generals problem [6], [7]
and [8] addresses how a set of peers (processes) can arrive at a consensus in the face
of adversary attacks. Group consensus is hard to carry out in a peer-to-peer setting,
since at any given time the group membership is hard to enumerate. In addition,
group consensus is stronger than what we need. If we have a large number of
peers, it is not necessary for them to synchronously ensure all their copies of some
data item are correct. The approach of an Opinion Poll taken by LOCKSS is a
weaker requirement than a consensus, but in the peer-to-peer setting it can be used
to guarantee data resilience over a long time period.

In this paper, we investigate a set of communication protocols in a peer to peer
system that can enable mutually untrusted peers to cooperate through Opinion Polls
such that they preserve data in a scalable way and for the long term. In Section 2
we set the requirements for the system and describe our assumptions. In Section
3 we provide an overview of the original LOCKSS algorithms. In Sections 4, 5,
and 6 we describe our new set of protocols and evaluate how their performance
as the network grows and when peers go off-line. In Section 7 we show how our
protocols can defend against adversary attacks. Finally, in Section 8§ we examine
the behavior of the system and its steady state in the long term.

2 Requirements and Assumptions

In this section we describe the requirements under which the system can guaran-
tee data resilience using Opinion Polls. Then we state our assumptions about the
network, peers and the adversary. We make our assumptions conservative, by as-
suming weak peers, powerful adversaries and basic communication mechanisms.

We divide peers with respect to their intentions into two classes: loyal peers
that follow the protocols and malicious peers that do not. With respect to the quality
of a specific data item that they store we divide they loyal peers into healthy and
corrupted.

2.1 Requirements

The requirements are the following:

REQ.1 A peer should be able to perform random sampling over the whole peer set to
perform unbiased Opinion Polls. That means if the peer knows all the whole
peer set it performs pure random sampling on that set. If the peer only knows
a pure subset of the peer set then this subset should be updated regularly in
an unbiased way such that the effect of performing random sampling on the



REQ.2

REQ.3

REQ.4

REQ.5

REQ.6

subset is the same as performing random sampling on the whole set over
time.

Votes in an Opinion Poll are seen in public. This means that other peers can
observe someone’s vote and use that information for either personal feedback
for the quality of their data item or to detect attacks.

Opinion Polls should not allow a minority of malicious peers corrupt the data
items of healthy peers.

A peer cannot rely on a central authority. It trusts only itself and the opin-
ion of the majority of other peers. Each operates on its own with minimal
configuration and management.

A peer cannot rely on cryptography, PKI, digital signatures. Therefore, it can
verify the contents of a message only by asking the sender or the receiver of
the message. This means it cannot verify the content if the sender and the
receiver give different responses.

The system must maintain the property that a large proportion of peers are
healthy at all times.! How large this proportion should be is evaluated in
Section 8.

2.2 Assumptions

The assumptions that we make about the network infrastructure are the following:

NA.1

NA.2

NA.3

NA.3

The network provides a set of uniquely identified network addresses (IP),
which serve as peer identification.

Each peer can only receive messages destined to its address; by exchanging
messages (handshake) a pair of peers can “authenticate” each other using the
network address as a weak form of authentication.

Each peer can send a message to any other peer in 1 hop, which might consist
of multiple network hops. In this case, no other peer sees that message.

The underlying network does not necessarily support multicast mechanisms,
so peers multicast a message by sending several copies of the same message.

The assumptions that we make about peers are the following:

PA.1

PA.2

All peers in the network share the same data items. Therefore the view of
the peer network is with respect to a single data item. The actual peer net-
work might possibly be larger, but only peers that share the same data item
communicate among themselves.

A large proportion of the peers are loyal and follow the protocols, in order
to keep other peers healthy at all times. Therefore, any random sample of
peers is expected to have a large proportion of loyal peers. How large this
proportion should be is investigated in detail in Section 8.

"By definition, malicious peers are not healthy



PA.3 A peer can be on-line or off-line. After a peer has been off-line for a long
period of time it is considered to have exited the system. Peers go off-line
independently of each other.

PA.4 A peer has enough memory to store routing state (i.e. other peers) and voting
state (such as poll participants and vote contents it has seen). An implemen-
tation of the system can set this minimum amount of memory such that all
peers comply with it.

The system’s adversaries are considered to be all the peers that are malicious.
Our assumptions about malicious peers are similar to those by Sit and Morris ([9]).
A malicious peer is assumed to be able to do anything, but the following:

AA.1 It cannot convert a loyal peer into a malicious peer by online means.

AA.2 Because of assumption NA.2 it can only receive messages destined to its
address, so it cannot intercept messages addressed to another peer. In other
words the underlying network infrastructure (routers, firewalls, etc) cannot
be controlled by the adversary and are owned by a neutral third party.

To give a flavor of what a malicious peer can do we include the following:

AA.3 It has the capability to forge messages. It can forge the contents and it can
spoof any other peer as the originator or the forwarder of a message (includ-
ing IP addresses).

AA.4 It can send messages to potentially all the other peers.

AA.5 It can know all other malicious peers and communicate with them without
the knowledge of loyal peers. Whenever a message reaches a malicious peer
it can be assumed it was received by all of them. That implies that whenever
a malicious node is invited to participate in a group then it can have the rest of
the malicious nodes participate as well. It also implies that malicious nodes
can conspire and try to subvert a loyal and healthy peer into a corrupted peer.

AA.6 It can act as a loyal peer whenever it desires to.

3 Lockss Algorithms

We now briefly describe the inter-peer communication algorithm in LOCKSS as
well as how it performs Opinion Polls.

There is a group of peers that contains a data item.? The population may change
overtime, and each peer only has a limited local view of the population. Each peer
may become off-line at certain periods of time.

There are three kinds of messages peers use to communicate with each other:

e keep-alive - sent to announce the existence of a peer

e poll - sent to trigger roughly q votes from random peers; q is the quorum size

The group is assumed to have size in the order of 100 peers or higher



e vote - sent to answer a poll; meant to be “public”, i.e. heard by other voters
and monitoring peers

All messages are sent using the same mechanism - hop-controlled flooding.
Each peer keeps a list (fixed sized) of friends. When a peer receives a message of
hop count h > 0, it decrements the hop count and forwards the message to all its
neighbors.

How does each peer get its friends list? Initially, each peer is configured with a
set of default peers. This corresponds to a directed graph consisting of links from
regular peers pointing to the small number of default peers. Initial connectivity for
the regular peers is very low (can only reach a few peers).

Whenever a peer receives a message, the upstream forwarder is included as a
friend (if not already so), and the oldest friend is removed if necessary to keep the
friend list size constant. 3 The dynamic updating of the friends list is supposed to
help increase connectivity, as well as bias the connectivity towards peers who had
recent interaction with the local peer.

Keep-alive messages are sent at regular intervals. This is to ensure that in the
absense of polls the on-line peers are connected to each other. Since the offline
peers are not around to send keep-alive, they will be pushed off the friends lists
over time.

A poll has a desired quorum size, q. Each poll message is sent with an initial
hop-count to reach more peers than g. A distributed algorithm inspired by that used
in SRM[10] is used to randomly select ¢ voters. Basically, each peer receiving the
poll message sets a timer. It is assumed the votes end up reaching most of the other
voters. When the timer goes off, if the local peer has not heard more than ¢ votes,
it then volunteers itself and sends a vote.

A vote is a message in response to a specific poll. The votes are assumed
to reach the poll initiator and most other voters due to the way the friends list is
updated (i.e. consisting of mostly the initiator and other voters).

All these messages may be received multiple times, which is the flooding in a
richly connected network. This is considered a feature as long as duplication is not
too high. Duplicate copies provides some basis to detect messages tampered by
forwarding peers.

All the peers who receive enough votes (at least ¢) will tally the results. There
are three possible results:

1. Almost all the peers agree with the local peer - this should be the usual case;

2. Almost all the peers disagree with the local peer - this should mean the local
peer is wrong.

3. The local peer disagrees with some of the votes and agrees with some other
votes - This in-between situation is not expected to happen. It may be an
indication of possible attack by adversaries.

The number of votes sufficient to distinguish these three cases determines what an
appropriate quorum size is.

Since all peers monitor polls initiated by others, the overall rate of polls can be
kept at roughly a constant.

3With some probability the originator of a message is also included in the friends list.



As we will demonstrate later with simulation, the LOCKSS algorithm does not
perform very well. Due to the constant update of the friends list to include recent
senders, the global connectivity is rather low - this affects the randomness of the
peers the poll messages reach. Also, duplicate delivery is highly uneven.

In practice, LOCKSS still worked reasonably well because it uses multicast
whenever it is available and in the experimental system, part of the network had
multicast support.

4 Problem Decomposition and Approach

In order to perform Opinion Polls reliably we identify the following subproblems
that our protocols have to solve:

Connectivity: Every peer should be able to reach any other peer in the network. Over a long
period of time every peer should have heard from or send an advertisement
to every other peer in the network. A solution to this problem is necessary to
reach requirement REQ.1.

Random Sampling: Every peer should be able to randomly select peers from the whole peer set.
The solution to this problem satisfies requirement REQ.1

Poll setup: A peer should be able to initiate a poll and organize with other peers such that
they can send and receive votes reliably and the initiator can draw a definite
conclusion. A solution to this problem helps satisfy requirement REQ.3 and
REQ.4.

Vote Monitoring: Poll Participants can see multiple copies of every vote they observe, such
that they can draw conclusions for the quality of the poll and the quality
of their data items. A solution to this problem satisfies requirement REQ.2,
REQ.5 and in combination with a solution to the Poll Setup problem satisfies
requirement REQ.3.

Solutions to all the above problems together satisfy requirement REQ.7.

We introduce the Friend Discovery Protocol that deals with the Connectivity
and Random Sampling problems. Using that protocol every peer maintains an
equal number of links. A network that is created when each peer has an equal
number of links to other peers is called an exponential network. Such networks are
robust against attacks as presented in [11] and [12]. The Friend Discovery Protocol
is described in detail in Section 5.

We introduce the Poll Protocol that deals with the Poll Setup and the Vote
Monitoring problem. Using that protocol every peer can perform Opinion Polls in
an unbiased way. The Poll Protocol is described in detail in Section 6.

Like in LOCKSS our protocols use keep-alive, poll and vote messages. Details
and modifications on each type of message are described under the corresponding
protocols.

To evaluate the performance of our protocols we have created a round based
simulation of our peer network using the Ascape agent modeling tool [13]. Each
peer in the system was represented as an agent. with an ID from 0 to number of peers—
1. Each agent was designed to perform the following actions every round:



e perform a check and set the on-line, off-line status. So, with some probability
an agent might go off-line.

o if the agent is online then it participates in the friend discovery protocol and
the poll protocol.

Peer 0 was the only peer designed to initiate polls for simplicity purposes.

Using the simulation we examined how the network connectivity* is improved
compared to the LOCKSS algorithms. We further examined how the connectivity
degrades as more peers are added while keeping a constant number of links per
peer. Then, we examined how friend discovery and polls are affected as peers go
off-line randomly while the system is in operation.

With respect to metrics, we observed the fraction of peers unreachable, U,,,
when a keep-alive message is flooded, and the global and local efficiencies of the
network, E o, and Ej,,. respectively, two quantities introduced by [14].

We represent our network as a directed graph G with the peers as the nodes and
the links from a peer to its friends in the friend list. We denote as /N the number of
peers in the network.

Uy, is a good indication of how well a message gets flooded in the network. It
is defined as U, = %, where R, is the set of peers that received the message
m.

As in [14] €¢;; = f_j is the efficiency between peer 7 and j where d;; is the
shortest distance in hops in G from node ¢ to node j. We use efficiency instead
of distance because if a graph is disconnected and nodes ¢ and j are in different
connected components then d;; = oo.

Global efficiency gives us a good idea of how many hops peers are away from
each other. It is a good indicator of how easily peers can get discovered by other
peers in the Friend Discovery Protocol. It is defined as:

1
Egion = NN =1 > €
Vi, j €G]
In order to get an idea how E,, is related to the expected shortest distance
E[d;j] we use the well known inequality between the harmonic mean H and arith-
metic mean A of a set of positive numbers. Thatis G < A. A = @1#a2tetan 5pqg

1 1 1
Lyl 4L ) .
L =@ e T e Defining our set as the distances di; we get that Egj, = %

(ﬁld Eld;;] Z Aso ﬁ < Eld;j]. so ﬁ is a lower bound for the average
shortest distance between two peers in the network.

Local efficiency is a measure of how well connected are the peers that a peer
directly points to. The more links between them the higher the local efficiency. A
complete graph has perfect local efficiency since all possible paths are there.

We define as (G, the subgraph that consists of the neighbors of node k. We

denote as Ny, the number of nodes of Gj..

1
Eloc = N Z Elock
VkeG

where

“We loosely define connectivity as the ability to for a peer to reach another peer over time given
a a certain connection topology
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In other words Ej,, is the global efficiency of the subgraph G/..

S Friend Discovery

The friend discovery protocol helps peers in learning about new peers and setting
up their routing information. Similarly to LOCKSS, peers enter the network using
a bootstrapping mechanism. After they are connected they periodically advertise
their existence by sending keep-alive messages. At the same time, they listen to
incoming keep-alive messages and record peers in memory. Every peer keeps a
friend list to whom it forwards keep-alive messages just like in LOCKSS. However,
unlike LOCKSS the friend list is updated from entries in memory.

5.1 Memory

A certain amount of memory is necessary in order to perform message routing and
voting. The following memory models are attempts to satisfy requirement REQ.1
and help satisfy requirement REQ.2.

5.1.1 Infinite Memory Model

A peer with infinite memory remembers all the peers it has heard messages from,
therefore:

1. It can perform perfect random sampling, thus satisfying requirement REQ.2.

2. It automatically satisfies requirement REQ.1.

5.1.2 Filtering Model

If a peer has limited memory, it can remember only a constant number of peers at
any given time. These entries are stored in a fixed size list called the buffer list. The
size of the buffer list has to be at least as the minimal required memory as defined
by requirement REQ.1.

A peer has to periodically refresh its buffer list with new entries in an unbiased
way so that it can perform random sampling and fulfill requirement REQ.2. It
listens to advertisements by other peers and it uses a filtering mechanism to select
the new entries. This is described in more detail in Section 5.4.

5.1.3 Filtering with Large Memory Model

If the peer combines the two memory models described above it gets a large buffer
list, called the reference list, and at the same time uses a filtering mechanism to
update list entries. The reference list is large enough to approximate the properties
of the infinite list even if the number of peers in the system is very large. It fulfills
requirement REQ.1 and it has a large enough number of entries to allow a peer to
fulfill requirement REQ.2 without any elaborate filtering mechanism. We assume



that the reference list can hold a number of entries much larger than the number of
malicious peers in the network.

At first glance, this looks like it might not be an easily applicable model for a
peer’s memory, but let’s present a few examples that demonstrate otherwise:

e A normal PC these days can easily devote 500MB of data of its hard drive to
store a file that contains 500 byte entries for a million other peers, where each
entry could include an ID, IP address, a reputation and some comments for
example. Such a list can approximate an infinite list for about 100 different
data items if we assume that at most 10000 peers hold the same data item.

o A MICA wireless sensor board [15] has 128KB of flash memory and it could
save from 100 up to maybe 1000 entries depending on how many bytes it
should allocate for each peer entry. That means that even if we deploy 1000
sensors that could talk to each other, each sensor has enough entries in its
list to approximate an infinite list.

5.2 Keep-Alive Message

Keep alive messages contain the originator of the message and the sender (for-
warder) of the message. They also contain a hop count value that every forwarder
decrements before forwarding the message. Extra information that could be at-
tached to this message such as the full list of peers that this message traversed
before reaching someone is not currently used by our protocol, but maybe it could
optimize friend discovery by providing more peers to be added to memory every
time a message is received.

5.3 Bootstrapping

We do not enforce a particular bootstrapping mechanism, although we believe cer-
tain mechanisms have security advantages over others, while others are more easily
applicable. The two most common ones are those that use a default list or a trusted
friend. In the first each peer knows a small number of peers that can contact in
order to enter the network. This assumes that these peers are online and working
properly. Denial of service attacks on the default list could cause serious prob-
lems. On the other hand, a trusted friend is a peer that the incoming peer has built
offline trust with and it contacts to enter the network. This mechanism is highly
decentralized and less prone to denial of service attacks. This might work well in
a corporate or academic environment. However it is not easily available to other
environments where it is difficult to build offline trust.

5.4 Advertising and Listening

The algorithm for advertising that we use is the following: The peer generates a
keep-alive message with a fixed hop count. It then forwards the message to each
of its friends in the friend list. Every friend forwards the message to its own friend
list excluding the sender if it is in its friend list. The forwarding continues until the
hop count goes to zero.

Every time a peer receives a keep-alive message and it decides to record the
message it will add to memory both the sender and the originator of the message.



The algorithm for listening depends on the memory model of each peer. If
the peer has an infinite list or a partially filled reference list then it listens to all
incoming messages and adds both the sender and the originator in its memory. If
the peer has finite memory it should then have a policy on how it replaces entries
when its memory is full, so that it does not fill its list with malicious peers in the
long term. We assume all peers have a reference list, so when a list is full the peer
can select a random peer from the reference list and replace it with a peer from
a newly received message if that peer does not already exist in the list. A much
more elaborate policy needs to be done if a peer has a buffer list and currently we
have not explored in detail a policy that we are confident will avoid attacks from
malicious peers. We leave this as future work.

5.5 Updating the friend list

Periodically every peer refreshes its friend list using the information in its memory.
The algorithm for updating the friend list is to perform random sampling from the
entries in memory, so that links to immediate neighbors dynamically change in an
unbiased way. That guarantees that advertisements will get flooded in an unbiased
way. If this list is not updated in a unbiased manner then an adversary can perform
several attacks as described in Section 7.

5.6 Evaluation

The advertising and listening algorithms provide a solution to the Connectivity
problem in combination with the friend list updating algorithm. Furthermore, they
help solve the Random Sampling problem for peers with buffer lists.

For the Friend Discovery Protocol Eg., and Uy, are the two metrics that are
relevant to evaluate the performance of the algorithms.
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Figure 1: Metrics plotted versus time (rounds). Every peer has 5 friends and N=60.
Keep-alive hop count=3. Friend list update mechanisms of original LOCKSS with
a multicast group used

Figure 1 shows the performance of the original LOCKSS friend discovery al-
gorithm where N = 60 with every new peer added directly to the friend list. In
addition, there is a multicast group of 9 peers. Figure 2 shows our friend discovery



L |

[= [

0@

08

o7

06y
DataView #1

05 ~ Average Eglob

s —Average PercentUnreachable
—Average Eloc

o2

02

0 147 WL WRWR TS o N o RIS Rl

Figure 2: Metrics plotted versus time (rounds). Every peer has 5 friends and N=60.
Keep-alive hop count=3. New friend list update algorithms used with a reference
list without multicast

algorithm using the same N where the friend list is updated using the reference
list. The performance of our algorithms is much higher than LOCKSS as observed
by the high message reachability (low U,,) and the higher global efficiency. This
performance is achieved without even using a multicast group to flood the mes-
sage. The reason for the better performance is that peers perform better random
sampling and they tend to form a larger connected component rather than smaller
clusters. The fact that the local efficiency is lower in our algorithm verifies that
fact.

In addition, we observed the global efficiency decreases as N increases, but
not rapidly enough to concern us about the connectivity of the network. Figure 3
shows how the global efficiency decrease as IV increases from 10 peers to 10000
peers. The simulation was run with 4, 8, 16 and 64 friends in the friend list. The
more the friends the longer the global efficiency stays high.

Figure 4 and 5 show Egp, Ejoc and Uy, for each round. For U, we picked
a random keep-alive message that was sent during that round. During these mea-
surements every peer had 5 friends and N = 100. The difference between the
two cases is that in Figure 4 no peer goes off-line, whereas in Figure 5 every peer
can go off-line before each round with probability 0.4. Once peers go off-line the
unreachability of each message is increased from about 0.25 to about 0.75. This
means that messages propagate much more slowly when links are lost. We can
remedy this by increasing the hop count of a keep-alive message. As shown in
Figure 6, U,, decreased to about 0.5 as the hop count was increased from 3 to 4
hops.

The only effect that broken links have on the friend discovery protocol is to
slow down friend discovery until the memory fills up with enough entries. If a peer
does not receive a keep-alive message from a peer in its reference list for a long
period of time? it can assume the peer is off the network.

5 A period several orders of magnitude greater than the advertisement period
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Figure 3: Global Efficiency versus log scale of the number of peers in the network.
The four lines correspond to 4, 8, 16 and 64 friends in the friend list.

6 Opinion Polls

The Poll Protocol is used by a peer that wants to conduct an Opinion Poll. Such
a peer is called the initiator. The peers that it calls to conduct the poll are called
participants.

Before the initiator starts the poll it sets two values, the poll degree § and the
poll radius p. The poll degree sets the number of votes the initiator and each partic-
ipant expects to count at the end. The poll radius defines the monitoring depth of
the poll. A poll radius of 1 for example allows monitoring only for the initiator and
a poll radius of 2 allows monitoring for the initiator and for the peers that monitor
the initiator. Monitoring is described in more detailed in Section 6.0.3.

The brief description of an Opinion Poll is the following: the initiator floods a
poll message with a certain degree and radius where every forwarder is considered
a parent and the receivers are its children. Parent, grandparent and children form
clusters together. Participants vote within their clusters and later they monitor all
the votes within their cluster.

During an Opinion Poll the initiator and every participant maintains two lists:
the one-hop list L and the two-hop list L2 regardless of the poll radius. The mean-
ing of their names will become apparent after we describe the poll setup algorithm.

6.0.1 Poll Message

Poll messages contain the originator of a poll, the poll degree and the poll radius. In
addition a poll message contains L as a set of peer IDs. Finally a hop count H that
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Figure 4: Metrics plotted versus time (rounds). Every peer has 5 friends and
N=100. No peers fail. Keep-alive hop count=3.

is initialized at the value of the poll radius and is decremented by each subsequent
forwarder.

6.0.2 Vote

A vote contains the voter and the sender of the vote. The voter attaches its response
on the vote message, which could be a binary value (agreement or disagreement)
or a piece of data to be verified by other peers.

6.0.3 Polling Protocol

An Opinion Poll consists of 3 phases: poll setup, voting and monitoring. The poll
setup algorithm solves the problem of Poll Setup. The voting algorithm and the
monitoring algorithm solve the Voting and Monitoring problem.

The poll setup algorithm is started by the initiator. It decides the poll size and
the monitoring depth and sets p and § accordingly. It randomly selects § peers from
its list (buffer or reference) and enters them in its one-hop list L. These peers are
considered its children. It is up to the peer to decide whether it has enough peers in
memory so that its selection of the one-hop list is unbiased. For example the peer
might wait until it knows 100 other peers in order to pick 8 for the one-hop list,
while another might think 20 is good enough.

The initiator creates a Poll message with a new ID and adds the following:
(p, 6, curHop, L) where cur Hop = p and is decremented by the receivers. The
initiator sends the message to each peer in L. After the poll setup terminates the
initiator becomes a voter.

Every receiver of the poll message performs the following:

e it becomes a voter for the poll-id of the message. This means that it will run
the voting algorithm after poll setup terminates.
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Figure 5: Metrics plotted versus time (rounds). Every peer has 5 friends and
N=100. Peers can fail independently with 0.4 probability per round. Keep-alive
hop count=3.

e it adds the entries of L, which is sent in the message to its own L2.

e it decrements cur Hop. If cur Hop = 0 it adds the sender to its L and stops.
Otherwise it proceeds to the next step.

e it fills its own L with § — 1 randomly selected peers from its memory. Now
L contains its children.

e it forwards L to the sender. The sender adds these entries to its L2.

e it adds the sender to L. Now L contains the children and the parent, a total
of d peers.

e in the poll message it replaces the sender’s L with its L.
o it forwards the message to its L except the sender.

This algorithm terminates when curHop goes to 0.

After the algorithm terminates every peer’s L contains peers that were one hop
away in the flooding path of the poll message. L2 on the other hand contains
peers that were indirectly introduced to each other through the contents of the poll
message.

Examining the topology of the graph that this algorithm creates we observe the
following:

e Direct links are formed from a peer to peers in its L and L2. Every link
between two peers is bidirectional.

e The initiator and its immediate children in L all have links to each other and
they form a clique if none of them goes off-line while the poll takes place.
We call this the main cluster.
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Figure 6: Metrics plotted versus time (rounds). Every peer has 5 friends and
N=100. Peers can fail independently with 0.4 probability per round. Keep-alive
hop count=4.

e Every peer p — 1 hops away from the initiator is a parent. The subgraph that
contains a parent and the peers in its L is a clique as well if peers don’t go
off-line while the poll takes place. We call it a secondary cluster.

An example of how the poll setup phase works is shown in Figure 7 where the
initiator is peer 0 and has set p = 2 and § = 3. In parentheses are the peer IDs the
L entries. At the end of every hop the two-hop links are formed and the back links
to the sender.

After poll setup is done every voter runs the voting algorithm. Every peer
creates a vote (maybe after a small delay to wait for everyone to receive the poll
message) and sends the vote to its L and L2 using a hop count of 2. Each peer that
receives the vote forwards it to both L and L2. After a certain timeout every peer
removes L and L2.

The initiator is the only peer that will have to update its data item based on
the results of the poll. After it receives votes from the main cluster it groups the
copies for each vote together. If no failures or malicious attacks have happened the
initiator expects to receive 0 — 1 copies from each voter in the main cluster. For
each voter it computes the apparent vote as the value of the majority of the copies.
The final result is the value of the majority of the apparent values. As long as the
majority of the peers in its one-hop list are not corrupted then it will receive the
correct result. In case the majority function yields no winner ,then the initiator has
two choices: if there is a vote that matches its own then it takes this as the majority
value. If not, then it considers the vote as a negative vote.

The graph that is created by the poll setup phase enables monitoring votes as
well. Otherwise, there would be no reason to create the extra links among peers.
We could instead have the poll initiator set p = 1 and have only the its children vote
and send the votes directly to the initiator using a star topology with the initiator at
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Figure 7: An example of the setup phase of a poll with § = 3 and p = 2. Six steps
are shown from top left to bottom right. At the end there are 4 monitoring clusters
formed.

the center.

The monitoring algorithm works as follows: every peer monitors votes origi-
nated by peers in a cluster that it belongs to. It records the votes that it sees, iden-
tifies the originator and the forwarder of the votes it is monitoring and it groups
the copies of the same vote together. Finally it computes for each voter the appar-
ent vote value as the value of the majority of the copies for this particular voter.
Therefore every monitoring peer has a view of the votes cast by peers within its
own cluster.

The larger the poll radius the more peers get monitored. However, p = 2
allows deep enough monitoring for a single poll. Also a good idea is to set § to
an odd number value so there are no ties estimating the apparent vote for each
voter. There might be a case when there is no majority found when estimating
the apparent vote. In that case the monitoring peer acts as the initiator does when
estimating the apparent vote. In addition it records all the false values it received if
none of them matches its own vote.

Every peer unsatisfied by the view that it has after monitoring is allowed to



perform subsequent polls. There are two cases that a peer might be unsatisfied by
the result. The initiator is considered unsatisfied if the results of the voting are very
close, so it can call another poll on a larger peer set. A participant is considered
unsatisfied if the majority of the votes it received disagrees with its vote. That peer
should initiate a poll of its own to possibly a larger set of peers.

An unsatisfied monitoring peer that performs its own poll can evaluate the in-
tegrity of the previous poll and possibly detect malicious and corrupted peers as
described in more detail in Section 7.

6.1 Evaluation

Unlike LOCKSS we used two different lists L and L2 to perform message rout-
ing in polls instead of using the original friend list. The reason for doing that
was that a random graph where each peer has a constant number of links has very
low “cliquishness”; in other words low local efficiency. From our simulation we
observed that the local efficiency decreases much more rapidly than the global effi-
ciency as the size of the network increases. Figure 8 shows how the local efficiency
decreases as N increases from 10 peers to 10000 peers. The simulation was run
with 4, 8, 16 and 64 friends in the friend list. The local efficiency drops signif-
icantly as N increases even if the number of friends increases, which means that
we cannot depend only on the immediate friends to form a good cluster for doing
a poll.

Local efficiency as N increases

——4 friends
e K " = & frends
! 16 friends
64 friends

Eloc

og(number of peers)

Figure 8: Local Efficiency VS log scale of the number of peers in the network. The
four lines correspond to 4, 8, 16 and 64 friends in the friend list.

The results follow our intuition from random graphs that the graph tends to
form a large connected component rather than a group of clusters when each node



has a constant number of links greater than 1. These results led us to form the
temporary links for the poll protocol to increase significantly the local efficiency
of the poll network.

That lead us to have our Polling Protocol go through the Poll Setup phase to
increase the local connectivity of the poll participants. Table 1 shows some values
that we collected from our simulation with N = 100 and p = 2 as § increases. In
general the local connectivity stays above 0.9.

J Eloc

310.90-0.91
41092-0.93
51092-093
910.90-091

Table 1: Local efficiency of a poll for different values of delta. N = 100 and
p=2

When peers go off-line the two things we looked at was the actual number of
participants in the poll and secondly, the number of copies of each vote that every
participant received at the end of the poll. These two values were compared with
the ideal case where all peers all on-line at all times.

peer_id | number of vote copies
0 1
34
5
2
99
97
81
68
45
30

W W W W W W UL Li

Table 2: Number of copies that peer 0, the initiator of the poll received. 9 other
peers participated. No peer went off-line during the poll

peer_id | number of vote copies
0 1
99 3
71 2
8 2

Table 3: Number of copies that peer 0, the initiator of the poll received. 3 out of
the 9 expected participants. Participants went off-line mostly in the setup phase.

Tables 2, 3 and 4 show examples of 3 different cases of poll outcomes for the
poll initiator. The first case is when all peers are on-line at all times. The other
two cases show the results when every peer can go off-line with probability 0.4
before each round. A poll is simulated as 2 rounds. The first round corresponds to



peer_id | number of vote copies
0 1
85 3
80 3
47 2
42 3

Table 4: Number of copies that peer(0), the initiator of the poll received. 6 out of
9 participants. Participants went off-line mostly in the voting phase.

the setup phase where peers create the temporary links to other peers. The second
round corresponds to the voting phase, where peers cast their votes to all the peers
they know. Peers could fail before either of the two phases. Table 3 shows the
results when most of the failures happen before the poll setup phase. As you can
see the number of participants is much smaller than it should be because many
peers failed before they were called to participate. Table 4 shows the results when
most of the failures happen during the voting phase. There are more peers to vote,
but the number of copies is lower than the ideal case.

These results show that although we have a very high off-line rate, the polls
still work well and the poll initiator receives a handful of copies. The numbers are
similar for the rest of the participants in the poll.

7 Attacks and Defenses

There are three types of attacks an adversary can perform. First, impersonation
attacks, second attacks on the Friend Discovery Protocol, and third on the Poll
Protocol.

We divide attacks on the protocols into the following classes:

e Communication attacks that abuse the communication constraints such as
exceeding the number of keep-alive messages per time period, exceeding the
number of entries in the friend list or not forwarding messages while the hop
count is not 0.

e Timing attacks where the adversary tries to gain advantage over other peers
by sending messages at specific times.

e Abuse of probability attacks where the adversary will seek a deterministic
behavior whenever a loyal peer might act randomly.

e Corruption attacks. These involve all the cases that the adversary will try to
provide false information to other peers or alter message contents such as
vote values.

7.1 Impersonation Attacks

As stated in our assumptions a peer can send any message to whoever it wishes,
however it can only read messages that are addressed to its own IP. Therefore,
in our system the IP address of the peer is a form of weak authentication, where
every peer can verify messages sent by a peer using well known methods of 3-way



handshakes or 1-way handshakes (find references to that). Therefore we assume
that such message can only do as much damage as denial of service. But in a peer
to peer system with exponential network topology denial of service attacks do not
have as strong an effect as shown in [11] and [12].

7.2 Friend Discovery Protocol attacks

An adversary can perform timing and communication attacks in order to affect
the contents of the friend list of the targeted peer. Since the friend list is selected
periodically from memory the only way a malicious peer can enter itself in the
friend list is if it gets itself inserted in the peer’s memory. Therefore a malicious
peer will try to send keep-alive messages to as many peers as possible and we can
assume that it can reach every peer on the network.

It is very difficult to detect such an abuse of communication, since it requires
aggregate data from many peers. The best we can do is to limit the effects of such
an attack by combining memory size and listening behavior.

There are two cases depending on the memory model of the attacked peer:

In the case of a peer that keeps a reference list the attack is very weak since we
assume that the reference list approaches the properties of the infinite list. Every
peer in the network has probability near m to be selected as a friend
so since we assume that the majority of the peers are loyal then the friend list will
contain more loyal peers than malicious.

In the case of a peer that keeps a buffer list the attack can be very strong if the
behavior of the attacked peer can be predicted. If the adversary knows that the peer
listens at all incoming messages and updates its friend list at the end of a certain
time period with the peers that it remembers more recently then the adversary will
synchronize its keep-alive message to be sent right before the peer decides to up-
date its friend list from its memory. Therefore the listening behavior of a peer with
limited memory should be unpredictable.

As stated earlier we concern ourselves with the former case. A peer with a
reference list can easily detect if a peer sends messages too frequently by doing
statistical analysis on the number of messages received by each peer in its list.

The worst case that we have observed is when a peer just enters the network. If
the peer enters the network not knowing a single loyal peer then it will never learn
any and live in a network full of malicious peers. Then it can easily be subverted to
carry a corrupted data item. Even if that worst case scenario happens, the subverted
peer would still be loyal, but corrupted. Since this peer will get isolated by any
good peers so its corrupted data items cannot harm other peers. As long as a large
proportion of the nodes is loyal and healthy if this node obtains a single link to a
loyal peer it will eventually learn the rest. If it tries to spread corrupted content by
participating in Opinion Polls it will become healthy again.

7.3 Poll protocol attacks

A malicious peer can tamper with the poll protocol in either of two roles: as a poll
initiator or as a participant.

As a poll initiator it can perform a communication attack and fix an Opinion
Poll in order to subvert loyal and healthy peers. This is done by fixing the partici-
pants to be all its malicious friends and a single healthy peer. To the attacked peer



the poll looks like a normal Opinion Poll, but its L and L2 lists contain malicious
peers, so the clusters it belongs to will yield corrupted results.

However this attack has little effect if the healthy participant has connections
to loyal peers and it can pick its own children (i.e. it is less than p hops away from
the initiator). Even in the case where the participant is p hops away, the peer enters
an unsatisfied state and then it calls a its own Opinion Poll of larger size than the
previous poll and then detect the attack.

As a participant the malicious node can only have an effect on clusters it be-
longs to. It can perform attacks at the poll setup phase and the voting phase.

During the poll setup phase it can only have an effect on its children. Every
loyal peer following the protocol forwards the poll message downstream to a fixed
number ¢ of peers. So every receiver expects to hear only from one parent. If it
hears from more then it means it’s either a child of both or one is a malicious peer
trying to corrupt it. For this to happen the malicious peer has to know what are the
children of the other peers, which is highly unlikely if they are chosen randomly
from memory. Even if it succeeds this has the same effect as acting as an initiator
on a secondary cluster.

During the voting phase a malicious participant can perform two types of at-
tacks. The first involves sending votes with a false value and possibly changing
good votes that it receives to the same false value before forwarding. The purpose
of this attack is to convince the poll initiator and the loyal monitoring peers to ac-
cept the false value as correct. The second type of attack involves either dropping
or modifying votes such that they don’t match the correct value, but not in a con-
sistent way. The purpose of this attack is to corrupt votes from loyal peers, such
that the initiator or a monitoring peer cannot determine what value an apparent vote
has.

The first type of attack can be easily detected by the monitoring peers. They
record the votes they receive and they notice apparent votes that disagree with their
vote. Because they are unsatisfied they call their own polls to verify the votes that
they received earlier. By comparing the new values with the old values they can
detect the attack.

The initiator will not get corrupted by such an attack as long as more than half
of its children in the one-hop list are loyal.

The second type of attack is very similar to the Byzantine general’s problem
[6], where a voter acts as the commanding general and the peers in its cluster
as the lieutenants. A peer in the cluster cannot determine whether the voter is
corrupted or the forwarder has corrupted a perfectly good vote. Since these two
cases are indistinguishable to a third peer, peers keep a neutral position regarding
the inconsistency.

8 System Steady State

In this section we analyze the behavior of the system in the long term. In particular
we calculate the probability that the system will fail to preserve a data item given
the number of loyal but corrupted peers 7 and the number of malicious peers m. We
let N; be the number of loyal peers so the total number of peers is /N; + m and the
number of loyal and healthy peers is N; — i. We assume every poll has cluster size
of n. From our attack and defense analysis we can assume that a malicious peer



participating in a poll can perform at most as much damage as a loyal corrupted
peer.
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Figure 9: Markov chain diagram of the system.

We model the system as a Markov chain of length N; + 1 where each state
represents the system when ¢ corrupted peers exist, as shown in Figure 9. The last
state, IV; is an absorbing state and state 0 is an absorbing state if m < 3. The
system is in a state ¢ either because of malicious attacks or because of natural data
corruption. A transition to a new state happens when a loyal peer conducts a poll.®
Given a state ¢ the system can move to 7 + 1 if a poll corrupted the initiator (with
probability p.,). The system goes to state 7 — 1 if the poll repaired a corrupted
initiator (with probability p;,). If the initiator did not change from corrupted to
healthy or vice versa then the system stays at ¢. To see whether the system fails or
not in the long term we are interested in calculating the probability P;, which is the
probability that given the system starts at ¢ it will reach ¢ = Nj.

Intuitively, we expect the system to have two stable regimes, one where no
corrupted copies survive (state 0) and one where no healthy copies survive (state
N;). Any other state should be unstable and in the long run will end up in one of

the stable regimes.

8.1 Statistical Analysis

We define as py the probability that we select a healthy peer out of N; + m given
¢ corrupted peers. So, pg = Ji,\lf :7; We define P, as the probability that a poll
of cluster size n will agree in favor of the healthy copy, in other words that the
majority of the voters are healthy and loyal. We assume that N >> n, so

n

n -r
Ppoll = Z <r>p7]ll(1_pH)n
1

r=[g

This is the same probability that a r-out-of-n component system will survive if
more than half of its components remain functional.
Therefore,

Pe; = PH(1 — Ppont)

%We assume polls happen more frequently than natural corruptions, so we don’t consider them
explicitly for the state transitions.



and
Pri = (1 = pr) Ppou

Since our model has the Markov property we can compute P; by conditioning
on the outcome of the first poll:

Pr;

Cq

P =pe,Pig1 +pr, Pi— 1+ (1 = pe, — pr, )P = Piy1 — P = (P — Pi1)

for0 <7 < N,
Since ¢ = IV; is an absorbing state we get one additional equation,

Py, =1

Solving this system of NV; equations we find F;:

1+ZNZ 1 leC]PO

P = prj
7 DPr;
D k=1 Hf—l P, (1 - PO)
Pi1=P+

for 0 <7 < V.

In order to compute Py we use recursive approximation instead of computing
Py explicitly. We start with Py = 0 and compute P;. To find the new Py we set
Py = Pip,, since p,, = 0.

Figure 10 shows how P; changes with respect to <. We can notice that even
when ¢ = 20 the system tends to go to the 7+ = 0 regime almost certainly (with
probability 0.9999), while when ¢ > 50 the system tends to go to the ¢ = N
regime. We see that as the number of malicious peers increases from m = 10 to
m = 30 then the system can afford a smaller number of corrupted peers in order
not to fail (? < 10). However, as the size of the poll increases to n = 9, the system
can afford more corrupted peers (¢ < 20).

In Figure 11 we increase /NV; to 500 and explore how the effect of the malicious
peers is modified. We observe that although the ratio of malicious peers is the same
and the size of the poll remains unchanged having more peers in total destroys the
effect of malicious peers completely. For example, when the ratio is 130% = égg for
N; = 100 we get Py = 1072 and for N; = 500 we get Psg = 1013

The system shows very high resilience to intentional corruption, even if the
number of malicious and corrupted peers is a high percentage of the total popula-
tion. We assume that unintentional corruption is less dangerous than intentional,
because it happens by natural failures that occur less often than attacks. Since the
system tends to move to the ¢ = 0 regime when there are is not a sufficient number
of corrupted copies, then assuming that natural failures occur independently for
each peer ¢ will not deviate much from 0, so the system will recover easily.

9 Conclusions

We have designed and analyzed a set of protocols that achieve data resilience for
the long term using a set of mutually untrusted peers that are loosely organized.
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Figure 10: log scale of P; VS i, the number of corrupted peers in the network.
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We use Opinion Polls to heal corrupted copies of data items stored by peers. Our
algorithm scale to a large number of peers and can resist attacks by malicious
peers and peer failures. We have evaluated our protocols with respect to existing
methods for data preservation and shown that they can achieve similar effects with
less expensive algorithms than traditional fault tolerance techniques. Finally our
simulations show that they scale well as the number of peers increases.

10 Future Work

As we stated earlier peers with a buffer list can easily become targets for malicious
peers, since malicious peers can perform timing attacks and get themselves in every
peer’s buffer list. A future project would be to find a good policy for replacing
entries in the buffer list such that malicious peers cannot predict what messages a
peer listens to and what entries it replaces in the buffer list.
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