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ABSTRACT

The vnode interface has succeeded in supporting a wide range of file system imple-
mentations over its 6-year history. During that time it has also had to accommodate evo-
lution in file system semantics, and in the relationship between the file system and the
virtual memory system. The effects of this evolution have been less than elegant, and

pressures for further evolution are mounting.

The evolution of the interface is reviewed in order to identify the problems it has caused,
and a more robust revision of the interface design proposed. This design also permits
new file systems to be implemented in terms of pre-existing file system implementations;
it is more like the Streams interface in this respect. The current state of a prototype
implementation is described and its performance characterized.

MELENE (lazily). We are very well aswe are. Life without a care — every want supplied by
a kind and fatherly monarch, who, despot though he be, has no other thought than to make his
people happy — what have we to gain by the great change that isin store for us?

Gilbert & Sullivan, Utopia, Ltd.

1. Introduction

The vnode interface was developed in 1984 to
abstract out file system operations in order to sup-
port multiple file system implementations, in par-
ticular NFS8 and the Berkeley file system.® Over
the 6 years since then it has been very successful;
many versions of the UNIXT kernel use it in some
form, and many different file system implementa-
tions have been based on it. During that time it
has also had to accommodate evolution in file
system semantics, and in the relationship between
the file system and the virtual memory system.2
412 The effects of this evolution have been less
than elegant, and pressures for further evolution
are mounting.

| review the evolution of the interface in order to
identify the problems it has caused and, using
experience with a SunOS 4.1-based prototype, |

Copyright 00 1990 by Sun Microsystems. The extract
from the System V Release 4 vnode.h file is copyright
AT&T and is reproduced by kind permission.

T UNIX isatrademark of Bell Laboratories.

propose a more robust revision of the interface
design. Thisdesign also permits new file systems
to be implemented in terms of pre-existing file
system implementations; it is more like the
Streams interface!l 16 or layered protocols in the
x-kernel” in this respect. | also characterize the
performance of the prototype.

It isimportant to stress that | am merely reporting
the current state of research work in progress; |
know of no current plans to make changes like
the ones | describe in Sun products.

2. Review of Vnode Evolution

The original vnode design had the following
goals:

e Provide a well-defined interface between file
system implementations and the rest of the
kernel.

e Support but not require Unix file system
semantics. In particular it should support
local disk file systems, statefull and stateless
remote file systems, and other file systems
such as that of MS-DOS.



e Define an interface that can be used by
kernel-resident implementations of remote file
servers.

e All file system operations should be atomic.

enum vtype {
VNON, VREG, VDI R, VBLK,
VCHR, VLNK, VSOCK, VBAD
)

struct vnode {

u_short v_flag;
u_short v_count;
u_short v_shl ockc;
u_short v_exl ockc;

struct vfs *v_vf snount edher e;
struct vnodeops *v_op;
uni on {

struct socket *v_Socket ;
struct stdata *v_Stream
} ov_s;
struct vfs *v_vfsp;

enum vtype
caddr _t

v_type;
v_dat a;
I
struct vnodeops {
int (*vn_open) ();
int (*vn_close) ();
int (*vn_rdw) ();
i nt (*vn_ioctl)();
int (*vn_sel ect)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access) ();
int (*vn_l ookup) ();
int (*vn_create)();
int (*vn_renove) ();
int (*vn_link)();
int (*vn_renane) ();
int (*vn_nkdir)();
int (*vn_rndir)();
int (*vn_readdir)();
int (*vn_symink)();
int (*vn_readlink)();
int (*vn_fsync)();
int (*vn_inactive)();
int (*vn_bmap) ();
int (*vn_strategy)();
int (*vn_bread)();
int (*vn_brelse)();

Figure 1: Origina Vnode Interface

To these, the implementation added:

e There should be little or no performance
degradation.

e Static table sizes should not be required.

e File systems should not be forced to use cen-
tral resources.

e Theinterface should be re-entrant.

e An‘‘object-oriented’’ programming approach
should be used.

e Each operation is done on behalf of the
current process.

These goals resulted in the design outlined in Fig-
ure 1. Each vnode contains a small amount of
data and a pointer to an ‘‘ops vector’’, a structure
defining the operations that the rest of the kernel
can invoke on the vnode object. In C++ terminol-
ogy,1® the entries in the ops vector are the virtual
functions of the vnode class. The detailed seman-
tics of the virtua functions of the various vnode
versions aren’t important for the argument of this

paper.
These operations are invoked via macros like:

#defi ne VOP_FOOQ(vp) (*(vp)->v_op->vn_foo)(vp)

Note that for a particular machine architecture,
these structures and the calling conventions for
the functions define a binary interface; C is used
here merely as away of making it legible.

2.1. Sun0S4.X

By the release of SunOS 4.0 in 1988, consider-
able evolution had occurred in the vnode inter-
face, as shown in Figure 2. Three fields had been
added to the vnode, increasing its size by 8 bytes,
and 9 entries had been added to and 4 entries
deleted from the ops vector (see Table 1 below).
These changes were motivated by:

e The rewrite of the virtua memory system.
This unified file 1/O and paging, replacing the
buffer cache  operations  (vn_bmap,
vn_strategy, vn_bread, vn_brelse) with pag-
ing operations (vn_getpage, vn_putpage,
vn_map), and required a new field (v_Pages)
in the vnode.

e The representation of special files as a file
system type. This added a field (v_rdev) and
an operation (vn_realvp).

e System V support. This added a field
(v_filocks), an operation (vn_cntl), and a new
vnode type (VFIFO).

2.2. System V Release 4

By the release of System V Release 4 in 1989, the
vhode had evolved further. As shown in Figure
3, the structure had lost 3 fields and gained 8 (all
reserved for future use), expanding to 72 bytes.
The ops vector had gained 8 actual operations
plus another 32 reserved for future use. Among
the motivations for these changes were:



enum vtype {

VNON, VREG VDI R, VBLK,

VCHR, VLNK, VSOCK, VBAD, VFIFO
)

struct vnode {

u_short v_flag;
u_short v_count;
u_short v_shl ockc;
u_short v_exl| ockc;

struct vfs *v_vf snount edher g;
struct vnodeops *v_op;
uni on {

struct socket *v_Socket ;
struct stdata *v_Stream
struct page *v_Pages;

} v_s;

struct vfs *v_vfsp;

enum vtype v_type;

dev_t v_rdev;

| ong *v_fil ocks;

caddr _t v_dat a;

b

struct vnodeops {
int (*vn_open) ();
int (*vn_close) ();
int (*vn_rdw ) ();
int (*vn_ioctl)();
int (*vn_select)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access) ();
int (*vn_I ookup) ();
int (*vn_create)();
int (*vn_renove) ();
int (*vn_link)();
int (*vn_renane) ();
int (*vn_nkdir)();
int (*vn_rrdir)();
int (*vn_readdir)();
int (*vn_symink)();
int (*vn_readlink)();
int (*vn_fsync)();
int (*vn_inactive)();
int (*vn_l ocketl)();
int (*vn_fid)();
int (*vn_get page) ();
int (*vn_put page) () ;
int (*vn_map) ();
int (*vn_dunp) ();
int (*vn_cmp) ();
i nt (*vn_realvp) ();
int (*vn_cntl)();

Figure 2: SunOS 4.X Vnode Interface

e The replacement of Unix domain sockets by
Streams, which removed a vnode type and a
field in the vnode.

e The need to support Xenix semantics, which
added a vnode type.

e The removal of Berkeley-style locks, which
removed two vnode fields.

e Additional remote file system support, which
added 5 new operations.

2.3. Problems of Evolution

The evolution of the vnode is summarized in
Table 1. There has been a steady growth in the
size of the vnode and the number of operationsin
the ops vector.

Table 1: Vnode Evolution
Release Year Fields Bytes Ops
SunOS 2.0 1985 11 32 24
Sun0S 4.0 1988 14 40 29
SVRA4 - fill 1989 11 40 37
SVR4 +fill 1989 19 72 69
Prototype 1989 6 20 39

In System V Release 4 amost half the vnode
structure and almost half the ops vector are
devoted to preparing for future evolution. |
believe this demonstrates that our current tech-
niques for dealing with the evolution of kernel
interfaces are inadequate. It cannot be a good
idea to impose 80+% space overheads on data
structures in order to cope with future change. It
appears that a revision of the vnode interface to
be more robust in the face of changing demands
for file system functionality is required.

3. Design

What is this 80% overhead intended to achieve?
The problem is that customer kernels have to be
built from components supplied in object form by
a number of suppliers. We want to let indepen-
dent software vendors (ISVs) supply file system
implementations if they need new file system
semantics to achieve their ends, and to do so in
object form to protect their investment. The
processes of releasing and distributing software
mean that customers cannot expect to get both a
new operating system release and the correspond-
ing release of the ISV’ s product at the same time.

Thus, it must be possible for the customer to build
a working kernel from object components with
the kerndl at a higher release number than some
of the file system implementations it is using.
Note that there isin general no customer demand
for kernels in which the file system implementa-
tions are at a higher level than the rest of the ker-
nel; in this situation it is relatively easy for the
ISV to supply both old and new versions of their
file system.

In attempting to revise the vnode interface, | had
two main goals:



enum vtype {

VNON, VREG VDI R, VBLK,

VCHR, VLNK, VFIFO, VXNAM VBAD
)

struct vnode {

u_short v_flag;
u_short v_count;
struct vfs *v_vf snount edher g;
struct vnodeops *v_op;
struct vfs *v_vfsp;
struct stdata *v_stream
struct page *v_pages;
enum vtype v_type;
dev_t v_rdev;
caddr _t v_dat a;
struct filock *v_fil ocks;
| ong v_filler[8];

b

struct vnodeops {
int (*vop_open) ();
i nt (*vop_close) ();
int (*vop_read) ();
int (*vop_wite)();
int (*vop_ioctl)();
int (*vop_setfl)();
int (*vop_getattr)();
int (*vop_setattr)();
int (*vop_access) ();
int (*vop_l ookup) ();
int (*vop_create)();
int (*vop_renove) ();
int (*vop_link)();
int (*vop_renane) ();
int (*vop_nkdir)();
int (*vop_rndir)();
int (*vop_readdir)();
int (*vop_symink)();
int (*vop_readlink)();
int (*vop_fsync) ();

void (*vop_inactive)();
int (*vop_fid)();

void (*vop_rw ock) ();
voi d (*vop_rwunl ock) ();

int
int
int
int
int
int
int
i nt
int
i nt
int
int
int
int

(*vop_seek) ();
(*vop_cnp) () ;
(*vop_frlock)();
(*vop_space) ();
(*vop_real vp) ();
(*vop_get page) () ;
(*vop_put page) () ;
(*vop_map) () ;
(*vop_addmap) () ;
(*vop_del map) () ;
(*vop_pol 1) ();
(*vop_dunp) () ;
(*vop_pat hconf) ();
(*vop_filler[32])();

Figure 3: SVR4 Vnode Interface

e To make an interface that would evolve to
meet new demands more gracefully by sup-
porting versioning .

e To reduce the effort needed to implement new
file system functionality by allowing vnodes
to be stacked .

The idea of stacking vnodesis not new; several of
the file systems in SunOS 4.1 (the translucent®
and the loopback file systems, for example)
implement vhodes whose operators simply invoke
the operators of an underlying vnode with slightly
altered arguments. But there had always been
severe restrictions on the ways in which vnode
operations could be overridden. | wanted to be
able to override all vnode operations in a com-
pletely general way that would support breaking
file system functionality down into small modules
like Streams modules. Instead of viewing file
systems as large monolithic structures, | wanted
to be able to plug them together from smaller
pieces.

3.1. Design Guidelines

To investigate solutions to these problems |
evolved a prototype, starting with an apha ver-
sion of SunOS 4.1. The prototype has been run-
ning for quite some time, but it is very much the
result of evolution not design. As | experimented
with it | evolved a set of design guidelines:

e Vnodes should stack. In other words, it
should be possible to interpose new func-
tionality on all operations invoked on an exist-
ing vnode without locating all pointers to it
and updating them. This is especialy impor-
tant since each page structure contains a
vnode pointer, and requiring file system code
to find and update all the page structures leads
to an inadmissible mixing of the file and vir-
tual memory sub-systems.

e In fact, vnodes should tree. It should be pos-
sible for one higher-level vnode to represent a
number of lower-level vnodes. As an exam-
ple, consider a fan-out-fs whose operations
simply invoke the corresponding operation on
all of aset of underlying vnodes (Figure 4).

Fan-out-fs
vnhode
c-fs b-fs afs
vnhode vnhode vnode

Figure 4: A vnode tree



No special-case code for mount. The whole
concept of stacking vnodes is a generalization
of the concept of mount. It should be possible
to replace the special-case code in name
lookup that currently implements mounts, and
the vfs_mountedhere field in the vnode.

Vnodes should be opaque. In other words, the
data structure visible to higher levels of the
kernel should contain no data, only a pointer
to the ops vector. A visible datum in the
vnode represents a possible operation (updat-
ing the value of the datum) that cannot be
overridden via the ops vector, because it
doesn’t need to go viathe ops vector.

Further, one of the problems of evolving the
interface is that the visible data in the vhode
structure changes. If there is no data in the
vnode, it cannot change.

Vnodes should be cheap. If vnodes are to
stack (or tree) there are likely to be severa
vnodes where at present there isonly one. So,
space in the vnode is a a premium. An
important advantage of opague vnodes is that
the data that they don’'t contain doesn't take
up space. Nor is there any need to reserve
space in the shape of v filler[8] in case the
non-existent data expands.

It might be argued that all that opague vhodes
achieve is to move data from the public to the
private part of a vnode. But, to my surprise,
much of the data in the public part of the
SunOS 4.X vnode was often present in some
other form in the private part.

No vnode type. A vnode type field or a vhode
type operator is an invitation for the higher-
level kernel code to test the type and behave
differently depending on the result. This is
likely to cause difficulties for file systems try-
ing to intercept all operations. It is better for
the rest of the kernel to treat all vnodes
equally and leave al special case catching and
error generation to the file-system specific
code.

For example, the SunOS 4.X kernel checks to
see if the vhode in which it is being asked to
look up a name is a directory, and generates
ENOTDIR if itisn't. Why not simply call the
vnhode's vn_lookup() operator and let it gen-
erate the ENOTDIR if the vnode doesn’t
represent something that can have names
looked up in it?

e There should be a cheap way to lock the
whole stack of vnodes. While one process is
manipulating a stack of vnodes, other
processes must be prevented from invoking
operations on any of the vnodes in the stack.
Locking the stack in this sense shouldn’t
involve, for example, traversing the stack set-
ting alock flag in each vnode.

e Vnodes should support versioning. It should
be possible for the higher-level kernel code to
use file system implementations constructed
with several versions of the interface, and
similarly to build file system implementations
that work with kernels that implement several
different versions of the interface.

3.2. TheNew Vnode

| believe that the new vnode should look like Fig-
ure 5. Thisisn't quite the way it currently looks
in my prototype’, but the prototype bears the
scars of alot of exploratory hacking.

Note that the vhode is almost opaque; except for
the reference count al the visible fields are
needed to implement the vnode stack. This is
held together by the v_top and v_above fields as
shown in Figure 6.

There is no public v_below pointer. The
representation of the set of vnodes, if any, below
a vnode is private to that vnode's file system
implementation; no higher-level code knows or
cares about the vnodes that may exist below a
vnode. The absence of a public down pointer isa
principle; if there were one it would alow
higher-level code to traverse the vnode trees and
invoke lower-level vnode's operations without
the intervening vnode finding out.

Instead of indirecting through the vnode to find
the ops vector and invoking the appropriate
operation as with previous vnode interfaces, the
macro finds the top vnode of the stack and
invokes the appropriate operation from its ops
vector. Even if the vnode pointer points into the
middle of the stack, the code that gets invoked
will be the corresponding operation of the top
vhode of the stack. Whether that vhode executes
the operation itself, or forwards it to other vnodes

* The prototype hasn't yet demonstrated versioning,
some of its vnode operations return values other than an
error code, and its ops vector still contains some
operations that should be obsoleted. Further, it isn’t
compatible with SunOS 4.1 in that it returns the wrong
code on some errors.



struct vnode {
struct vnode *v_top;
struct vnode *v_above;
struct vnodeops *v_op;

u_short v_readers;
u_short v_count;
caddr _t v_dat a;

b
struct vnodeops {
int (*vn_version)();
int (*vn_open) ();
int (*vn_cl ose) ();
i nt (*vn_rdw)();
int (*vn_ioctl)();
int (*vn_select)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access) ();
int (*vn_l ookup) ();
int (*vn_create)();
i nt (*vn_renove) ();
int (*vn_link)();
int (*vn_renane) ();
int (*vn_nkdir)();
int (*vn_rndir)();
int (*vn_readdir)();
int (*vn_symink)();
int (*vn_readlink)();
int (*vn_fsync) ();
int (*vn_inactive)();
int (*vn_l ockctl)();
int (*vn_fid)();
int (*vn_get page) () ;
int (*vn_put page) ();
int (*vn_map) () ;
int (*vn_dum) ();
int (*vn_cmp) () ;
int (*vn_cntl)();
int (*vn_vfsp)();
int (*vn_socket) ();
int (*vn_stream ();
int (*vn_bsdl ock) ();
int (*vn_bsdunl ock) () ;
int (*vn_i sswap) ();
int (*vn_swapon) ();
int (*vn_push) ();
int (*vn_pop) () ;
int (*vn_nanepage) () ;
int (*vn_unnanepage) () ;
int (*vn_pagecount) ();
int (*vn_pageapply) ();

Figure 5: The Ideal Vnode

The higher-level code invokes operations using
its vnode pointer like this:

#define VOP_FOO(vp) (*(vp)->v_top->v_op->vn_foo)(vp)

below it, isno concern of theinvoker’s. In effect,
a pointer to a vnode becomes an alias for the top
vnode of the stack.

Reference counting of these links is simple; the
v_above pointers hold a counted reference to the
vnode they point to but the v_top pointers do not.
Normally, the file-system specific downward

links do hold their vnode.
4. Implementation

4.1. Stack Manipulation Operators

Vnode stacks can be manipulated by two new
vnode operators, VOP_PUSH and VOP_POP.

VOP_PUSH( bel ow, above)

arranges that above is the new top vnode of the
stack containing below. If vp is the top of a
stack,

VOP_POP(vp)

pops it off. The implementation of these opera-
torsis file-system specific because they must deal
with the private representation each implementa-
tion uses for the set of vnodes below a vnode, and
because these operations may have file-system
specific side effects.

The mount operations use these facilities. A
mount is simply a stack of aroot directory over a
mount point directory; lookup operations on the
lower vnode automatically look up in the upper
vnode with no special-case code in the file-system
independent parts of the kernel. The only
special-case code left is in each file system. It

arranges to fall through to the lower vnode if "..
islooked up in the upper one.

In the current implementation, the definition of
"top" is stretched dightly. The first time
VOP_PUSH is applied to avnode, a special stack
head vnode is created which floats above any
vnodes pushed on the stack. VOP_POP removes
the vnode below this stack head. This avoids the
need to descend the stack and update the v_top
pointers when pushing and popping, and
simplifies locking.

4.2. Stacksand theVM System

In the SUNOS VM system, the page cache uses the
vnode pointer and the offset to establish the iden-
tity of the page. Allowing multiple aiases for a
vnode pointer introduces the potential for aliasing
in the page cache. To avoid this, it is hecessary to
establish arule for file system implementations.

Theruleis, if avnode belonging to a file system
implementation that wants control over the page
cache is pushed onto a stack, it must claim all
existing pages for the stack below. When it is
popped, it must either ensure there are none of its
pages in the cache or restore the previous identity.



vhode v_top
one

v_above  vnode v_top
two

v_above  vnode v_top
three

Figure 6: Vnode Links

A page in the cache is labelled with its identity by
the VOP_NAMEPAGE operator, and unlabelled
by VOP_UNNAMEPAGE. With the current VM
system, these operators add and delete pages from
the page hash lists. A function, such as one that
renames pages, can be applied to al the cached
pages for avnode by:

error = VOP_PAGEAPPLY(vp, fn, data);

In principle, thisinterface allows each file system
implementation to choose its own representation
for the set of in-memory pages. In practice, more
work is needed to refine the VM/FS interface to
make this feasible. The VM cache and locking
(see the next section) have an incestuous relation-
ship, and I'm far from happy with the current
implementation in either respect.

4.3. Locking

In order to ensure other processes don't see a
malformed vnode stack, there must be a method
of locking the entire stack while it is being mani-
pulated. It must be cheap and cannot involve
traversing the stack itself.

The technique I'm currently working on puts a
readers/writers lock in the special stack head
vhode. Before changing the stack, a writer
switches the ops vector in the stack head from
one containing operations like Figure 7(a) to one
containing operations like Figure 7(b). These
then ‘‘capture’’ any process invoking an opera
tion on any vnode pointer in the stack and puts it
to deep. The writer waits until there are no

static int
snarefs_foo(vp)
struct vnode *vp;

{
}

return( VOP_FO(vp));

Figure 7(a): Vnode Operation When Unlocked

static int
snarefs_foo(vp)

struct vnode *vp;
{

int error;

int s;

s = spl high();
(voi d) VOP_HOLD(vp);

while (vp->v_top->v_op == &snarefs_slow ops) {

(void) sleep((caddr_t)

&(vp->v_top->v_op), PSNARE);

}

(void) splx(s);
error = VOP_FOQ(vp);
(void) VOP_RELE(vp);
return (error);

Figure 7(b): Vnode Operation When Locked

readers, edits the stack, and switches the ops vec-
tor of the stack head back. This technique has no
overhead for vnodes that aren’t part of a stack,
and only a tail-recursion-type procedure call for
stack vnodes that are not locked. However, the
cost of maintaining the count of the number of
readers in a stack is significant.

4.4. Versioning

As described above, one advantage of opague
vnodes is that there is no need to version the
vnode structure itself. But the evolution so far
indicates that change in the ops vector must be
anticipated. Fortunately, stacking opague vhodes
allows an ‘*adaptor file system’” to be defined to
convert from the new version of the interface
used by the kernel to the older interface used by
the file system implementation (see Figure 8). All
that the adaptor-fs vnode needs in its private data
is the down pointer.

This technique' s overheads are very small:
e noincrease in size of the vhode structure,
e noincrease in size of the ops vector,

e asmal increase in run time for those vnodes
supported by back-level file system imple-
mentations.



vnode i/f v3

3-to-2
adaptor-fs
vnode

vnode i/f v2

version 2
some-fs
vnode

Figure 8: Adaptor-fs - v3 kernel to v2 fs

e asmall increase in space consumption, for the
adaptor-fs vnode for each vnode supported by
a back-level file system implementation.

Despite this, the technique alows for more
change in the interface than adding fillers. There
are no arbitrary limits on how much the interface
can change, provided the adaptor-fs can emulate
the minimum required new functionality in the
old interface’ s terms.

4.5. Performance

In my work on the prototype | have been explor-
ing rather than tuning, but | have found one per-
formance technique that could also be applied to
the existing vnode interfaces. Current file system
implementations have a single vnode ops vector;
all vnodes they create have the same ops vector
pointer (in fact, unpleasant parts of some kernels
even use the ops vector pointer to decide which
file system the vnode comes from!).

| changed the file systems to use a separate ops
vector for each type of vnode they support. For
example, the UFS file system implementation has
a different vector for normal files and for direc-
tories. The vn_lookup entry in the directory vec-
tor points to ufs lookup, but in the file vector it
points to aroutine like:

int

vfs_enotdir(vp)

struct vnode *vp;

{
return (ENOTDI R);

}

In this way, the file system implementation
doesn’t have to start all its operations by examin-
ing the type field and generating errors if it's
wrong. This computation is done once at vnode

create time instead of every time an operation is
invoked. In fact, the prototype contains a vhode
ops vector supported by the ‘*Nancy Reagan’’ file
system — all its ops vector entries point to error
stubs like vfs_enotdir() .

In this framework, just as each vnode type can
have its own ops vector, it can also have its own
private data. When defining the inode-equivalent
for a new file system, there is no need to provide
space for the directory offset in the private data
for aregular file.

Running one of Sun’s synthetic workload bench-
mark suites on the prototype kernel initialy
revealed approximately 7% degradation, with
special benchmarks for name lookup showing
approximately 30% degradation. This was obvi-
ously unacceptable, even for a prototype. The
major causes of degradation turned out to be:

e The vnode reference counting; in my zeal for
completely opague vnodes | had turned the
VN_HOLD and VN_RELE macros into full-
blown vnode operations called through the
ops vector (8%).

e Detecting vnodes that are the root of a
mounted file system; | had eiminated the
VROOT flag in avery expensive way (18%).

Fixing these resulted in a kernel with no detect-
able degradation on the synthetic workload
benchmarks and about 1% degradation in name
lookup. The worst-case path | found was looking
up ".." across a mount point, with about 6%
degradation. However, this was al before |
started working on locking. The various locking
implementations I've tried so far have degrada
tions in the 15-25% range for the worst-case
paths in name lookup.

5. Using File System Modules

As well as providing for evolution this way of
decomposing file system functionadity into
modules and connecting them at run-time in vari-
ous ways alows many opportunities for new
ways of implementing file system functionality.
To illustrate them, | describe a few possible
modules. | haven't implemented these ideas yet,
I’m only discussing them to show the potential of
the concept.

5.1. Quotas

Support for file-space quotas is an interesting
example of the possible use of file system
modules. In the current SunOS source, #ifdef



QUOTA appears in 22 files, ranging from
machdep.c to init_main.c. Despite this, only the
ufs file system supports quotas.

Suppose we construct a file system module that
can be pushed on top of mounted file systems to
provide quota services. It would intercept all
operations to the file systems underneath and
maintain an interna space usage database.
Operations violating the quotas would be
rejected. The quota-fs would use normal file sys-
tem operations on the underlying file system to
externalize the space database.

In this way, a single file system module imple-
mentation with no #fdef QUOTA elsewhere in
the kernel could provide quotas for all other file
system implementations.

5.2. A LessTemporary File System

One of the performance problems with ufs is the
need to write directories synchronously in order
to ensure that they will still be there in a con-
sistent form if the system crashes. Thisis a par-
ticular problem in /tmp, where the user may not
care if the files survive acrash. SunOSincludes a
file system implementation called tmpfs which
represents files in virtual memory; they may get
paged out to the swap area but they are never
written to disk. Mounting this on /tmp and
Jusrftmp improves performance significantly, at
the cost of ensuring that no files in /tmp and
Jusr/tmp survive acrash.

There is only one problem with this approach.
Some applications, vi for example, require tem-
porary files to survive crashes and be scavenged
before /tmp is cleaned out. Fortunately, these
applications normally fsync() their temporary
files when checkpointing to make sure they don’t
hang around in the buffer cache and get caught by
a crash. We can exploit this by building a write-
on-fsync module like Figure 9.

The module would route all writes to the tmpfs
vnode until and unless the process invoked the
fsync() operator. At that point, the file would be
copied to the underlying file system. In thisway,
files that were never fsync() ed would get the full
benefit of being really temporary, and files that
were would actually appear in permanent storage.

5.3. Watchdogs

Another possible module would implement
Watchdogs as described by Bershad and Pinker-
ton.} The watchdog-fs vnode would intercept all
or only the selected operations, convert them into
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Figure 9: Less Temporary File System

IPC messages on a Stream, and wait for a
response from the user-level watchdog process
reading the Stream. The content of this response
would determine if the operation was to be passed
on down the stack, or returned to the invoker.

5.4. Read-Only Caching

Consider a module like that in Figure 10. When
one of its operations is invoked from above, it
forwards it to the afs vnode. If that operation
succeeds the result is returned. Otherwise, the
operation represents a cache miss and must be
forwarded to the b-fs vnode. Typically, in this
case the cache-fs will aso try to prevent future
cache misses, for example by copying the file
from the b-fsto the a-fs.
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afs vnode | cachefs
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vnhode i/f

b-fs
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Figure 10: RO Cache File System

This simple module can use any file system as a
file-level cache for any other (read-only) file sys-
tem. It has no knowledge of the file systemsit is
using; it sees them only via their opaque vnodes.
Figure 11 shows it using a local writable ufs file
system to cache a remote read-only NFS file sys-



tem, thereby reducing the load on the server.
Another possible configuration would be to use a
local writable ufs file system to cache a CD-
ROM, obscuring the speed penalty of CD.
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nfs
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Figure 11: Local disk cache for RO NFS

File-level caching can be inefficient. If the file
system being used as a cache can be persuaded,
for example via a flag on the VOP_RDWR call,
to reject reads to holesin files instead of returning
zeros it can be used as a block-level cache. A
new entry in the cache is created as a file full of
holes, which are filled in as reads to the afs
vnode fail with an appropriate error such as
EHOLE. Thisisavery simple change to UFS.

5.5. Read-Write Caching

Srinivasan and Mogul13.14 modified the NFS pro-
tocols by adding the cache-consistency protocols
from the Sprite operating system.10 In this
environment, adding cache-consistency and thus
enabling a read-write file cache need not involve
modifying the NFS protocol. By alowing the
cache-fs implementations to communicate
amongst themselves using a cache-consistency
protocol such as Sprite's or the V system’s
leases® alongside the NFS protocol we should be
able to add caching without changing the protocol
used to move data to and fro (see Figure 12).

5.6. Fall-back

Another useful module could be the fall-back-fs,
shown in Figure 13. Each operation it receives
from above is sent to one of the N underlying
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Figure 12: Local disk cache for RW NFS

vnodes. If it fails with a retryable error, or does
not return before a timeout, another of the vnodes
is chosen and the operation tried on it. In this
way, the reliability and availability of the file sys-
tem seen through the top vnode interface is
greater than any of the individua underlying file
systems, and this has been accomplished with no
knowledge of or modification to the underlying

file systems.
vnod% i/f
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vnode
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Figure 13: Fall-back-fs

Typicaly, this would be used to spread the load
among a humber of NFS file servers for read-only
file systems, and to avoid clients being blocked
when one of the servers went down.



5.7. Replication

A similar useful module is the replicate-fs, shown
in Figure 14. Each operation it receives from
above is sent to each of the N underlying vnodes.
When M (<=N) of them has returned success-
fully, replicate-fs returns upwards. Read opera-
tions choose one of the N randomly. Implemen-
tations of replicate-fs communicate with each
other using an ordering protocol to ensure that
each sees the same sequence of operations and

therefore stays consistent.
vnod/vF i/f
Replicate-fs|ordering
vnode  [protocol
nfs ufs nfs
vnode vnode vnode

Figure 14: Replicate-fs

Using this module, a reliable replicated
configuration could be assembled from unreliable
pieces. For example, a set of machines could
each operate by replicating operations across a
local copy of afile system and a remote mount of
each of the other system’s copies.

6. Future Work

| have only started exploring these ideas. | have a
working prototype SunOS 4.1 kernel that is close
to the vnode interface | prefer, but | have done lit-
tle work on the versioning aspects of the problem.
| have converted most of the existing file system
implementations in SunOS 4.1 to use the new
interface, and | have started work on implement-
ing new file system modules like cache-fs. But
thereisagreat dea of work to do:

I’m still not happy with the locking technique,
nor with its relationship to the VM page
cache. There are performance and semantic
issues still to be resolved.

The System V Release 4 kernel and its file
system implementations need to be modified
in the same way. | don’t anticipate any major
problems in doing this.
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More file system modules need to be imple-
mented.

The adaptor-fs versioning technique needs to
be implemented and tested.

Experiments using the same techniques on
other internal kernel interfaces, particularly
the VFS interface, are needed.

The whole question of multi-threading has
been totally ignored.

Assuming that these are all achieved, there are a
large number of questions to be answered about
what to do with thistechnology. The vnode inter-
face is part of the System V Release 4 standard,
and is thus under formal change control. Discus-
sionswill be needed to investigate what role these
techniques might play in the future of System V.

7. Conclusions

As the demands on the system have changed, the
vnode interface has evolved to match them. The
techniques currently in use to cope with this evo-
lution are too expensive. The aternative tech-
niques of opague vnode structures and stacking
cope with evolution better at lower cost. But,
more importantly, opaque vnodes can be assem-
bled into tree structures. This alows file system
functionality to be dissected into small, indepen-
dent modules akin to Streams modules that are
interconnected at run-time.

Of course, this is just another example of object-
oriented programming. But unlike most exam-
ples, this is object-oriented programming at the
binary level.
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