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Abstract

In peer-to-peer systems, attrition attacks
include both traditional, network-level denial of service attacks as
well
as application-level attacks in which malign peers conspire to waste
loyal peers' resources.
We describe several
defenses for the LOCKSS peer-to-peer digital
preservation system that help ensure that application-level
attrition attacks even
from powerful
adversaries are less effective than simple network-level attacks, and that
network-level attacks must be intense, widespread, and prolonged to
impair the system.
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1 Introduction
Denial of Service (DoS) attacks are among the most difficult for
distributed systems to resist.
Distinguishing
legitimate requests for service from the attacker's requests
can be tricky,
and devoting substantial effort to doing
so can easily be self-defeating.
The term DoS was introduced by Needham [34] with
a broad meaning but over
time it has come to mean high-bit-rate
network-level flooding attacks [23] that
rapidly degrade the usefulness of
the victim system.
In addition to DoS, we use the term attrition
to include also moderate- or low-bit-rate
application-level attacks that impair the victim system.

The mechanisms described in this paper are aimed at
equipping the LOCKSS (LOCKSS is a trademark of
Stanford University -- it stands for "Lots Of Copies Keep Stuff Safe") peer-to-peer (P2P) digital preservation
system to resist attrition attacks. The system is in use at
about 80 libraries worldwide; publishers of about 2000
titles
have endorsed its use. Cooperation among peers reduces the cost
and increases the reliability of
preservation, eliminates the
need for backup, and greatly reduces other operator interventions.

A loyal (non-malign) peer participates in the LOCKSS system for two reasons:
to achieve regular reassurance
that its content
agrees with the consensus of the peers holding copies of the same content,
and if it does not, to
obtain the needed repair.
The goal of an attrition adversary is to prevent
loyal peers from successfully
determining the consensus of their
peers or from obtaining requested repairs for so
long that undetected storage
problems such as
natural ``bit rot'' or human error corrupt their
content. Other types of resource waste may be
inconvenient
but have no lasting effect on this system.

In prior work [30] we
defended
LOCKSS peers against
attacks seeking to corrupt their content.
That system,
however, remained vulnerable
to application-level attrition;
about 50 malign peers could abuse the protocol to
prevent a network of
1000 peers from auditing
and repairing their content.

We have developed a set of defenses,
some adapted from other systems, whose
combination in a P2P context
provides novel and effective protection against
attrition. These defenses
include admission control,
desynchronization, and redundancy.
Admission control, effected via rate limitation, first-hand
reputation, and
effort balancing, ensures that legitimate requests can
be serviced even during malicious request floods.
Desynchronization ensures that progress continues even if
some suppliers of a needed service are currently too
busy.
Redundancy ensures that the
attacker cannot incapacitate the system by targeting only few peers
at a time.
Our defenses may not all be immediately applicable
to all P2P applications, but we believe that many systems
may benefit
from a subset of these defenses, and that our analysis of the
effectiveness of these defenses is more
broadly useful.

This paper presents a new design of the LOCKSS protocol that makes four contributions.
First, we demonstrate
via simulation how our new design ensures that
application-level attrition, no matter
how powerful the attacker,
is less effective than simple network
flooding. We do this while retaining our previous resistance against
other
adversaries.
Second, we show that
even network-level flooding attacks that continuously prevent all
communication among a majority of the peers must last for months
to affect the system significantly.
Such
attacks are orders of
magnitude more powerful than those
observed in practice [33].
Third, since resource
management lies at the
crux of attrition attacks and their defenses,
we extend our prior evaluation [30] to
deal
with numerous concurrently preserved archival units of content
competing with each other for resources.
Finally,
resource over-provisioning is essential in defending against
attrition attacks. We show that with a
practical
amount of over-provisioning we can
defend the LOCKSS system from an arbitrarily powerful attrition
adversary.

In the rest of this paper, we first describe our application. We
continue by outlining how we would like this
application to behave
under different levels of attrition attack. We give an overview of the LOCKSS
protocol,
describing how it incorporates each of our attrition defenses.
We then
explain the results of a systematic
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exploration of simulated attacks
against the resulting design,
showing that it successfully defends against
attrition attacks
at all layers, from the network level up through the application protocol.
Finally, we describe
how the new LOCKSS
protocol compares to our previous work, as well as other related work.

2 The Application
In this section, we provide an overview of the digital preservation
problem for academic publishing.
We then
present and justify the set of design goals required of
any solution to this problem, setting the stage for the
LOCKSS approach in
subsequent sections.

Academic publishing has migrated to the Web [46],
placing society's scientific and cultural heritage at a variety
of
risks such as confused provenance,
accidental editing by the publisher,
storage corruption, failed backups,
government or corporate censorship, and
vandalism.
The LOCKSS system was designed [39] to
provide
librarians with the tools they need to preserve
their community's access to journals and other Web materials.

Any solution must meet six stringent
requirements. First, since under U.S. law copyrighted Web content can
only
be preserved with the owner's permission [16], the solution must accommodate
the publishers' interests.
Requiring publishers, for example, to offer perpetual no-fee access or
digital signatures on content makes them
reluctant to give that permission.
Second, a solution must be extremely cheap in terms of
hardware, operating
cost, and human expertise.
Few libraries could afford [3] a solution involving handling
and securely storing off-
line media, but most can afford the few cheap
off-the-shelf PCs that provide sufficient storage for tens of
thousands of
journal-years. Third, the existence of cheap, reliable storage cannot
be assumed; affordable storage
is unreliable [22,38].
Fourth, a solution must have a long time horizon.
Auditing content against stored digital
signatures,
for example, assumes not only that the cryptosystem will remain unbroken,
but also that the secrecy,
integrity, and availability of the keys are guaranteed for decades. Fifth,
a solution must anticipate adversaries
capable of powerful attacks
sustained over long periods; it must withstand these attacks, or at
least degrade
slowly and gracefully while providing unambiguous
warnings [37]. Sixth, a solution must not require a central
locus of control
or administration, if it is to withstand concentrated
technical or legal attacks.

Two different architectures have been proposed for preserving Web
journals. The centralized architecture of a
``trusted third party'' archive requires publishers
to grant a third party permission, under certain circumstances,
to
republish their content. Obtaining this permission involves formidable
legal and business obstacles [5]. In
contrast, the
distributed architecture of the LOCKSS system consists of many individual archives at subscribing
(second party) libraries. Readers only access their local library's copy,
whose subscription already provides them
access to the publisher's copy.
Most publishers see this as less of a risk to their business, and are
willing to add
this permission to the subscription agreement. It is thus
important to note that our goal is not to minimize the
number of replicas
consistent with content safety. Instead, we strive to minimize the
per-replica cost of
maintaining a large number of replicas. We trade extra
replicas for fewer lawyers, an easy decision given their
relative costs.

The LOCKSS design is extremely conservative, making few
assumptions about the infrastructure. Although we
believe this is
appropriate for a digital preservation system, less conservative assumptions
are certainly possible.
Increasing risk
can increase the amount of content that can be preserved with given
computational power.
Limited amounts
of reliable, write-once memory would allow audits against local
hashes, a reliable public key
infrastructure might
allow publishers to sign their content and peers to audit against the
signatures, and so on.
Conservatively, the assumptions underlying such
optimizations could be violated without warning at any time;
the write-once memory might be corrupted or mishandled,
or a private key might leak. Thus,
these optimizations
still require a distributed audit
mechanism as a fallback.
The more a peer operator can do to avoid local failures
the better the system works,
but our conservative design principles lead us to focus on mechanisms
that
minimize dependence on these efforts.
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With the application of digital preservation for academic publishing in
mind, we tackle the ``abstract'' problem
of
auditing and repairing replicas of distinct archival units or AUs
(a year's run of an on-line journal, in our
target application) preserved by a population of peers
(libraries) in
the face of attrition attacks. For each AU it
preserves, a peer starts out with its own,
correct replica
(obtained from the publisher's Web site), which it can
only use
to satisfy local read requests (from local patrons) and to
assist other peers with replica repairs. In the
rest of this
paper we refer to AUs, peers, and replicas, rather than journals and libraries.

3 System Model
In this section we present the adversary we model, our security goals
and the framework for our defenses.

3.1 Adversary Model

Our conservative design philosophy leads us to assume a powerful
adversary with several important abilities.
Pipe stoppage is his ability to prevent communication with
victim peers for extended periods by flooding links
with garbage packets
or using more sophisticated
techniques [26]. Total information
awareness allows him to
control and monitor all of
his resources instantaneously. He has unconstrained identities in that
he can purchase
or spoof unlimited network identities.
Insider information provides him
complete knowledge of victims' system
parameters and
resource commitments. Masquerading means that loyal peers cannot
detect him, as long as he
follows the protocol. Finally, he has unlimited computational resources,
though he is polynomially bounded in
his computations (i.e., he cannot invert
cryptographic functions).

The adversary employs these capabilities in effortless and
effortful attacks. An effortless attack requires no
measurable
computational effort from the attacker and includes traditional DoS
attacks such as pipe stoppage.
An effortful
attack requires the attacker to invest in the system
with computational effort.

3.2 Security Goals

The overall goals of the LOCKSS system are that, with high probability,
the consensus of peers reflects the
correct AU, and readers access good data.
In contrast, an attrition
adversary's goal is to decrease significantly the
probability of these events by
preventing peers from auditing their replicas for a long time, long
enough for
undetected storage problems such as ``bit rot'' to occur.

Severe but narrowly focused pipe stoppage attacks in the wild last for days or
weeks [33]. Our goal is to ensure
that, in the very
least, the LOCKSS system withstands or degrades gracefully with even
broader such attacks
sustained over months.
Beyond pipe stoppage, attackers must use protocol messages to some
extent. We seek to
ensure the following three conditions. First, a peer manages
its resources so as to prevent exhaustion no matter
how much effort is
exerted by however many identities requesting service. Second, when
deciding which
requests to service, a peer gives preference to requests
from those likely to behave properly (i.e., ``ostensibly
legitimate'').
And third, at every stage of a protocol exchange, an ostensibly
legitimate attacker expends
commensurate effort to that which he imposes
upon the defenders.

3.3 Defensive Framework
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We seek to curb the adversary's success by modeling a peer's processing
of inbound messages as a series of
filters, each costing a certain
amount to apply. A message rejected by a filter has no further effect
on the peer,
allowing us to estimate the cost of eliminating whole
classes of messages from further consideration. Each filter
increases
the effort a victim needs to defend itself, but limits the effectiveness
of some adversary capability. The
series of filters as a whole is
sound if the cost of applying a filter to the input stream passed
through its
preceding filter is low enough to permit the system to make
progress. The filters include a volume filter, a
reciprocity
filter, and a series of effort filters.

The volume filter models a peer's network connection. It
represents the physical limits on the rate of inbound
messages that an
adversary can force upon the peer. It is an unavoidable filter; no
adversary can push data
through a victim's network card at a rate
greater than the card's throughput. Soundness requires
the volume filter
to restrict the volume of messages enough
that processing costs at the next filter downstream are low. This
condition can be enforced either through traffic shaping or via the
low-tech choice of configuring peers with
low-bandwidth network cards.

The reciprocity filter takes inbound messages at the
maximum rate exported by the volume filter and further
limits them by
rejecting those sent from peers who appear to be misbehaving. A peer's
reciprocity filter favors
those of its peers who engage it with
requests at the same average rate as it engages them. The filter
further
penalizes those peers it has not known for long enough to
evaluate their behavior. In this sense, the reciprocity
filter implements a self-clocking invariant, by which
inbound traffic exiting the filter mirrors in volume traffic
originated at the
peer. Thus on average the number of requests passed to the next
filter matches the number of
requests inflicted by the peer upon others.

The effort filters focus on the balance of effort
expended by the peer and a correspondent peer while the two are
cooperating on an individual content audit request. These filters ensure that the
computational effort imposed
upon a
potential victim peer by its ostensibly legitimate correspondent is
matched by commensurate effort borne
by that correspondent. For
example, an attacker can only trick its victim peer into cryptographically
hashing
large amounts of data by first performing the same hash
itself (or other effort equivalent to the same hash). As a
result,
these filters enforce the invariant that ostensible legitimacy costs the
attacker as much as it allows the
attacker to inflict on its victim. Furthermore, the effort
filters ensure that a peer can detect at a low cost that an
attacker has abandoned ostensible legitimacy.

In summary, these filters take an input stream of protocol messages and
reduce it to levels consistent with
legitimate traffic in terms of
volume (volume filter), then in number of individual messages per
source
(reciprocity filter), and then in effort induced per
message (effort filters). Malicious interactions that pass
all
filters can ultimately affect the victim peer adversely, but are ensured to
impose no more than manageable
additional burden on the victim peer
and are guaranteed to cost the attacker as much burden in
the process. The
former guarantee is essential for the correct
operation of good peers in all cases, whereas the latter is only
meaningful when the adversary is resource-constrained.

We show in Section 7.4 that the most effective strategy
for effortful attacks is to emulate legitimacy,
and that
even this
has minimal effect on the utility of the system. Effortless attacks,
such as traditional distributed DoS
(DDoS) attacks, are more effective but
must be maintained for a long time against most of the peer
population to
degrade the system significantly (Section 7.2).

4 The LOCKSS Replica Auditing and Repair
Protocol
The LOCKSS audit process is a sequence of ``opinion polls''
conducted by every peer on each of its AU replicas.
At intervals,
typically every 3 months, a peer (the poller) picks a
random sample of peers that it knows to be



preserving an AU, and invites those peers as voters into a poll.
Each voter individually hashes a poller-supplied
nonce and its replica
of the AU to produce a fresh vote, which the poller tallies. If the
poller is outvoted in a
landslide (e.g., it disagrees with 80% of the
votes), it assumes its replica is corrupt and repairs it from a
disagreeing voter. The roles of poller and voter are distinct, but
every peer plays both.

Figure 1:
A timeline of a poll,
showing the message
exchange between the poller and a voter.

The general structure of a poll follows the timeline of
Figure 1. A poll consists of two phases:
vote solicitation
and evaluation.
In the vote solicitation phase the poller requests and obtains
votes from as many voters in its
sample of the population as possible.
Then the poller begins the evaluation phase,
during which it compares
these votes to its own replica,
one hashed content block at a time,
and tallies them.
If the hashes disagree the
poller may request repair blocks from its
voters and reevaluate the block.
If in the eventual tally, after any
repairs, the poller agrees with the landslide majority,
it sends a receipt to each of its voters and immediately
starts a new
poll.
Peers interleave progress on their own polls with voting in other
peers' polls, spreading each
poll over a period chosen so
that polls on a given AU occur at a rate much higher than
that of undetected storage
errors.

4.1 Vote Solicitation

The outcome of a poll is determined by the votes of the inner circle
peers, chosen at the start of the poll by the
poller from its
reference list for the AU.
The reference list contains mostly peers that have agreed with the poller
in
recent polls on the AU, and a few peers from its static friends list,
maintained by the poller's operator.

A poll is considered successful if its result is based on a minimum
number of inner circle votes, the quorum,
which is
typically 10, but may change according to the application's needs for
fault tolerance. To ensure that a
poll is likely to succeed, a poller
invites into its poll a larger inner circle than the quorum (typically,
twice as
large). If at first try an inner circle peer fails to
respond to an invitation, or refuses it, the poller
contacts a
different inner circle voter,
retrying the reluctant peer later in the same vote solicitation phase.

An individual vote solicitation consists of four messages (see
Figure 1): Poll, PollAck,
PollProof, and Vote. For the
duration of a poll, a
poller establishes an encrypted TLS session with each voter
individually, via an anonymous
Diffie-Hellman key exchange. Every
protocol message is conveyed over this TLS session, either keeping
the
same TCP connection from message to message, or resuming the
TLS session over a new one.

The Poll message invites a voter to participate in a poll on an AU. The invited peer
responds with a PollAck
message, indicating either a refusal to
participate in the poll at the time, or an acceptance
of the invitation, if it
can compute a vote within a predetermined time
allowance. The voter commits and reserves local resources to
that
effect. The PollProof message supplies the voter with a random
nonce to be used during vote construction. To
compute its vote, the voter uses a cryptographic hash function to hash the nonce supplied by the poller,
followed
by its replica of the AU, block by block. The vote consists of the running hashes
produced at each block
boundary. Finally, the voter sends its vote back
to the poller in a Vote message.



These messages also contain proofs of computational
effort, such as those introduced by Dwork et al. [15],
sufficient to ensure that, at every protocol stage, the requester of a service
has more invested in the exchange
than the supplier of the service (see
Section 5.1).

4.2 Peer Discovery

The poller uses the vote solicitation phase of a poll not only to obtain
votes for the current poll, but also to
discover new peers for its
reference list from which it can solicit inner circle votes in
future polls.

Discovery is effected via nominations included in Vote messages. A voter
picks a random subset of its current
reference list, which it
includes in the Vote message. The poller
accumulates these nominations. When it
concludes its inner circle solicitations, it chooses a random sample of these nominations
as its outer circle. It
proceeds to
solicit regular votes from these outer circle peers in a manner identical
to that used for inner circle
peers.

The purpose of the votes obtained from outer circle voters is to show
the ``good behavior'' of newly discovered
peers. Those who perform
correctly, by supplying votes that agree with the prevailing outcome
of the poll, are
added into the poller's reference list at the
conclusion of the poll; the outcome of the poll is
computed only from
inner-circle votes.

4.3 Vote Evaluation

Once the poller has accumulated all votes it could obtain from
inner and outer circle voters, it begins the poll's
evaluation phase.
During this phase, the poller computes, in parallel, all block
hashes that each voter should have
computed, if that voter's replica
agreed with the poller's. A vote agrees with the
poller on a block if the hash in
the vote and that computed by the
poller are the same.

For each hash computed by the poller for an AU block, there are three
possibilities: first, the landslide majority
of inner-circle votes
(e.g., 80%) agree with the poller; in this case, the poller considers
the audit successful up to
this block and proceeds with the next block.
Second, the landslide majority of inner-circle votes disagree with
the
poller; in this case, the poller regards its own replica of the AU as
damaged, obtains a repair from one of the
disagreeing voters (via the RepairRequest and Repair
messages), and reevaluates the block hoping to find itself in
the
landslide majority, as above. Third, if there is no landslide majority of
agreeing or disagreeing votes, the
poller deems the poll inconclusive, raising an alarm that requires
attention from a human operator.

Throughout the evaluation phase, the poller may also decide to obtain a
repair from a random voter, even if one
is not required (i.e., even if
the corresponding block met with a landslide agreement). The purpose of such
frivolous repairs is to prevent targeted free-riding via the
refusal of repairs; voters are expected to supply a small
number of
repairs once they commit to participate in a poll, and are penalized
otherwise (Section 5.1).

If the poller hashes all AU blocks without raising an alarm, it
concludes the poll by sending an evaluation receipt
to each
voter (with an EvaluationReceipt message), containing
cryptographic proof that it has evaluated received
votes. The poller
then updates its
reference list by removing all voters whose votes determined the poll
outcome
and by inserting all agreeing outer-circle voters and some
peers from the friends list (for details
see [30]).
The
poller then restarts a
poll on the same AU, scheduling it to conclude one interpoll interval
into the future.

5 LOCKSS Defenses
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Here we outline the attrition defenses of the LOCKSS protocol: admission
control, desynchronization, and
redundancy. These defenses raise system
costs for both
loyal peers and attackers, but favor ostensible legitimacy.
Given a constant amount of over-provisioning, loyal peers continue
to operate at the necessary rate regardless of
the attacker's power.
Many systems over-provision resources to protect performance from
known worst-case
behavior (e.g., the Unix file system [31]).

In prior work [30] we applied some of
these defenses (such as redundancy and some aspects of admission
control,
including rate limitation and effort balancing) to combat powerful attacks
aiming to modify content
without detection or to discredit the intrusion
detection system with false alarms. In this work, we combine these
previous defenses with new ones
to defend against attrition attacks as well.

5.1 Admission Control

The purpose of the admission control defense is to ensure that a peer
can control the rate at which it considers
poll invitations from
others, favoring invitations from those who operate at roughly the same
rate as itself and
penalizing others.
We implement admission control using three mechanisms: rate limitation,
first-hand
reputation, and effort balancing.

Rate Limitation: Without limits on the rate at which they attempt
to service requests,
peers can be overwhelmed
by floods of ostensibly valid requests.
Rate Limitation suggests that peers should initiate and
satisfy requests no
faster than necessary rather than as
fast as possible. Because readers access only their local LOCKSS peer,
the
audit and repair protocol is not subject to end-users'
unpredictable request patterns. The protocol can proceed at
its own pace,
providing an interesting test case for rate limitation.

We identify three possible attacks based on deviation from the
necessary rate of polling.
A poll rate adversary
seeks to trick victims into either
decreasing (e.g., through back-off behavior) or increasing (e.g.,
through
recovery from a failed poll) their rate of calling
polls.
A poll flood adversary seeks,
under a multitude of
identities, to invite victims into as many frivolous
polls as possible to crowd out the legitimate poll requests
and
thereby reduce the ability of loyal peers to audit and repair their
content. A vote flood adversary seeks to supply
as many bogus votes
as possible to exhaust loyal pollers' resources in useless
but expensive proofs of invalidity.

Peers defend against all these adversaries by
setting their rate limits autonomously, not varying them in response
to other peers' actions.
Responding to adversity (inquorate polls or perceived contention)
by calling polls more
frequently could aggravate the problem;
backing off to a lower rate of polls would achieve the adversary's
aim of
slowing the detection and repair of damage. Kuzmanovic et
al. [26] describe a similar attack in the context
of
TCP retransmission timers.
Because peers do not react, the poll rate adversary has no
opportunity to attack. The
price of this fixed rate of operation is that, absent manual intervention, a peer may
take several interpoll intervals
to recover from a catastrophic storage
failure.

The poll flood adversary tries to get victims to over-commit their
resources or at least to commit excessively to
the adversary.
To prevent over-commitment, peers maintain a task schedule of their
promises to perform effort,
both to generate votes for others and
to call their own polls. If the effort of computing the
vote solicited by an
incoming Poll message
cannot be accommodated in the schedule, the invitation is refused.
Furthermore, peers
limit the rate at which they even consider poll
invitations (i.e., establishing a secure session, checking their
schedule, etc.). A peer sets this rate limit for considering
poll invitations according to the rate of poll
invitations
it sends out to others; this is essentially a
self-clocking mechanism. We explain how this rate limit is enforced
in
the first-hand reputation description below.
We evaluate our defenses against poll flood strategies in
Section 7.3.

The vote flood adversary is hamstrung by the fact that votes
can be supplied only in response to an invitation by
the putative
victim poller, and pollers solicit votes at a fixed rate. Unsolicited votes are ignored.
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First-hand reputation: A peer locally maintains and uses first-hand reputation (i.e., history) for other peers. For
each
AU it preserves,
each peer 
maintains a known-peers list containing an entry for every
peer  that  has

encountered in the
past, tracking 's exchange of votes with .
The entry holds a reputation grade for ,

which takes one of
three values: debt, even, or credit. A debt
grade means that  has supplied  with fewer

votes than 
has supplied . A credit grade means  has supplied  with
fewer votes than  has supplied 

. An even grade means that
  and  are even in their recent exchanges of votes.
Entries in the known-peers

list ``decay'' with time toward the
debt grade.

In a protocol interaction, the poller and a voter each modify
the grade assigned to the other depending on their
respective behaviors. If the voter supplies a valid vote and valid repairs
for any blocks the poller requests, then
the poller increases the grade it
assigns to the voter (from debt to even, from even to credit, or from
credit to
credit) and the voter correspondingly decreases the grade it
assigns to the
poller. If either
the poller or the voter
misbehave (e.g., the voter commits to supplying a
vote but does
not, or the poller does not send a valid
evaluation receipt), then the other
peer decreases its grade to debt.
This is similar to the reciprocative strategy of
Feldman et al. [17],
in that it penalizes peers who do not reciprocate.
This reputation system
thus reduces free-
riding, as it is not possible for a peer to maintain an even
or credit grade without providing valid votes.

Peers randomly drop some poll invitations arriving from previously
unknown peers and from known pollers with
a debt grade.
To discourage identity whitewashing the drop probability imposed on unknown
pollers is higher
than that imposed on known indebted pollers.
Invitations from known pollers with an even or credit grade are
not dropped.

Invitations from unknown or indebted pollers are subject to a
rigid rate limit; after it admits one such invitation
for
consideration, a voter enters a refractory period. Like
the known-peers list, refractory periods are maintained
on a per AU
basis. During a refractory period, a voter
automatically rejects all invitations from unknown or
indebted pollers.
Consequently, during every refractory period, a voter admits at most one
invitation from
unknown or indebted peers, plus at most one invitation from
each of its fellow peers with a credit or even grade.

Since credit and even
grades decay with time, the total ``liability'' of a peer in the number
of invitations it can
admit per refractory period is limited to a small
constant number. The duration of the
refractory period is thus
inversely proportional to the rate limit imposed by
the peer on the per AU poll invitations it considers.

If a victim peer's clock could be sped up over several poll intervals then
the refractory period could be shortened,
increasing the effectiveness of poll flood attacks.
The victim would call polls at a faster rate,
indebting the victim
to its peers and making its invitations less likely to
be accepted.
However, halving the refractory period
from 24
to 12 hours has little effect (see Section 7.4).
Doubling the rate of issuing invitations does not affect other peers
significantly since the invitations are not accepted.
Further, an attack via the Network Time Protocol [32] that
doubles a victim's clock rate for months on end would be easy to detect.

Continuous triggering of the refractory period can stop a victim voter
from accepting invitations from unknown
peers who are loyal; this can
limit the choices of voters a poller has to peers that know
the poller already. To
reduce this impediment to diversity, we
institute the concept of peer introductions. A peer may
introduce to
others those peers it considers loyal; peers introduced this way bypass random drops and refractory
periods.
Introductions are bundled along with nominations during
the regular discovery process (Section 4.2).
Specifically, a poller randomly partitions the peer identities in a Vote message into outer circle nominations and
introductions.
A poll invitation from an introduced peer is
treated as if coming from a known peer with
an even
grade. This unobstructed
admission consumes the introduction such that at
most one introduction is honored per
(validly voting) introducer, and
unused introductions do not accumulate. Specifically, when consuming the
introduction of peer  by peer  for AU , all other introductions of other
introducees by
peer  for AU 
are ``forgotten,'' as are all introductions of peer  for  by
other introducers. Furthermore, introductions by
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peers who have
entered and left the reference list are also removed, and the maximum
number of outstanding
introductions is capped.

Effort Balancing: If a peer expends more effort to react to
a protocol message than did the sender of that
message to generate and
transmit it, then an attrition attack need consist only of a flow of
ostensibly valid
protocol messages, enough to exhaust the victim peer's
resources.

Real-world attackers may be very powerful but their resources are finite;
markets have arisen to allocate pools of
compromised machines to competing
uses [19].
Raising the computational cost of attacking one target system
both
absolutely and relative to others will reduce the
frequency of attacks. Our simulations are conservative;
the
unconstrained adversary has ample power for any attack.
But our design is more realistic.
It adapts the ideas of
pricing via processing [15]
to discourage attacks from resource-constrained adversaries
by effort balancing our
protocol.
We inflate the cost of a request by requiring it to include
a proof of computational effort sufficient to
ensure that the
total cost of generating the request exceeds that imposed on the receiver
both for verifying the
effort proof and for satisfying the request.
We favor Memory-Bound Functions
(MBF) [14] rather than CPU-
bound schemes
such as ``client puzzles'' [12] for this purpose, because the
spread in memory system
performance is smaller than that
of CPU performance [13].

Applying an effort filter at each step of a multi-step protocol
defends
against three attack patterns: first,
desertion strategies in
which the attacker stops taking part some way through the protocol, having
spent less
effort in the process than the effort inflicted upon his
victim; second, reservation strategies that cause the victim
to
commit resources the attacker does not use,
making those resources unavailable to other, useful tasks; and,
third, wasteful strategies
in which service is obtained but the result is not ``consumed'' by the
requester as
expected by the
protocol, in an attempt to minimize the attacker's total expended effort.

Figure 2:
The effects of the
logical filters on the incoming stream of poll invitations at a single
peer.
Rectangles represent poll
invitation streams from the different peers , , , etc.,
during the same time
interval . We show the streams as shaped by the
combination of filters, adding one filter at a time,

to illustrate
each filter's incremental effect.
Within a peer's poll invitation stream,
vertical gray bands
represent individual invitation requests.

Pollers could mount a desertion attack by cheaply soliciting
an expensive vote.
To discourage this, the poller
must include
provable effort in its vote solicitation
messages (Poll and PollProof) that in total
exceeds,
by at least
an amount described in the next paragraph,
the effort required by the voter to verify that effort
and to produce
the requested vote.
Producing a vote amounts to
fetching an AU replica from disk, hashing it, and shipping back
to the
poller one hash per block in the Vote message.

Voters could mount a desertion attack by cheaply generating a bogus
vote in response to an expensive
solicitation,
returning garbage instead of block hashes to
waste not merely the poller's solicitation effort but also
its effort
to verify the hashes.
Because the poller evaluates the vote one block at a time, it
costs the effort of
hashing one block to detect that the
vote disagrees with its own AU replica, which may mean
either that the vote
is bogus, or that the poller's and voter's
replicas of the AU differ in that block.
The voter must therefore include
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in the Vote message
provable effort sufficient to cover the cost of hashing a
single block and of verifying this
effort.
The extra effort in the solicitation messages referred to above
is required to cover the generation of this
provable effort.

Pollers could mount a reservation attack by sending a valid Poll
message to cause a voter to reserve time for
computing a vote in
anticipation of a PollProof message the poller never sends.
When a voter accepts a poller's
invitation, it reserves a block of time
in the future to compute the vote. When it is time to begin voting,
the voter
sets a timeout and waits for the poller to send a
PollProof if it has not done so already. If the timeout expires,
the
voter can reschedule the remainder of the block of time as it
pleases. The attack exploits the voter's inability to
reallocate the
timeout period to another operation by asking for a vote and then never
sending a PollProof. To
discourage this, pollers must include
sufficient introductory effort in Poll messages to match
the opportunity cost
the voter experienced while waiting for the
timeout.

Pollers could mount a wasteful attack by soliciting expensive
votes and then discarding them unevaluated.
To
discourage this we require the poller,
after evaluating a vote,
to supply the voter with an unforgeable evaluation
receipt
proving that it evaluated the vote.
Voters generate votes and pollers evaluate them using very
similar
processes: generating or validating effort proofs and hashing
blocks of the local AU replica. Conveniently,
generating a proof
of effort using our chosen MBF mechanism also generates
160 bits of unforgeable byproduct.
The voter remembers the byproduct;
the poller uses it as the evaluation receipt to send to the voter.
If the receipt
matches the voter's remembered byproduct the voter
knows the poller performed the necessary effort, regardless
of whether the
poller was loyal or malicious.

Section 7.4 shows how effort
balancing fares against all three types of attacks mounted by
pollers. We omit the
evaluation of these attacks by voters,
since they are rendered ineffective by the rate limits described above.

The Filters Revisited: Figure 2 illustrates how
the defenses of rate
limitation, first-hand reputation, and effort
balancing, enforced as
serial filters over incoming traffic (see
Section 3.3),
can protect LOCKSS peers from
attrition attackers. Among the peers with an initially good standing ( 
through ),  and  maintain a steady
balance of requested votes
throughout the time interval  to . Note that  asks for two votes in
close
succession; this is an instance of a peer expending its ``credit.''
In contrast,
  requests many more votes in close
succession than justified by its
grade and is downgraded to the debt
grade by the reciprocity filter, eventually
becoming subject to the refractory period. 
behaves with ostensible legitimacy with regards to the rate of
invitations it sends, but misbehaves by deserting (e.g., by not
supplying correct effort proofs) and, as a result, is
downgraded to the debt grade by the effort filter. 's subsequent invitations are subject to the refractory period.


 is initially unknown and therefore
subject to the refractory period, but behaves ostensibly legitimately
and is

upgraded to even or credit grade, freeing itself
from the refractory period. Peers , , , and  request many

more votes than reasonable and occasionally send simultaneous
traffic
spikes which exceed link capacity; they
are thinned out
by the volume
filter along with other peers' traffic. These peers,
as well as misbehaving peers 
and , share
the same refractory period and therefore only one invitation from them can be accepted per
refractory period.

5.2 Desynchronization

The desynchronization defense avoids the kind of
inadvertent synchronization observed in many distributed
systems,
typically by randomization.
Examples include TCP sender windows at bottleneck routers,
clients
waiting for a busy server,
and periodic routing messages [18].
Peer-to-peer systems in which a peer requesting
service must find
many others simultaneously available to supply that service
(e.g., in a read-one-write-many
fault-tolerant
system [28])
may encounter this problem.
If they do, even
absent an attack, moderate levels of peer
busyness can prevent the
system from delivering services. In this situation, a poll flood attacker may
only need
to increase peer busyness slightly to have a large effect.
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Simulations of poll flood attacks on an earlier version of the
protocol [29] showed this effect.
Loyal pollers
suffered because they needed to find a quorum of
voters who could simultaneously vote on an AU.
They had to
be chosen at random to make directed subversion hard
for the adversary. They also needed to have free resources
at the specified
time, in the face of resource contention from other peers
competing for voters on the same or
other AUs.
Malign peers had no such constraints,
and could invite victims one by one into futile polls.

Peers avoid this problem
by soliciting votes individually rather
than synchronously, extending the period during
which a quorum
of votes can be collected before they are all evaluated.
A poll is thus a sequence of two-party
interactions rather than
a single multi-party interaction.

5.3 Redundancy

If the survival of, or access to, an AU relied only on a few replicas,
an attrition attack could focus on those
replicas, cutting off the
communication between them needed for audit and repair.
Each LOCKSS peer
preserving an AU maintains its own replica and serves it
only to its local clients. This massive redundancy helps
resist
attacks in two ways.
First, it ensures that a successful attrition attack must target most
of the replicas,
typically a large number of peers.
Second, it forces the attrition attack to suppress the communication
or activity
of the targeted peers continuously for a long period.
Unless the attack does both, the targeted peers recover by
auditing and repairing themselves from the untargeted peers, as shown in
Section 7.2.
This is because massive
redundancy allows peers at each poll
to choose a sample of their reference list that is bigger
than the quorum and
continue to solicit votes from them
at random times for the entire duration of a poll (typically 3 months) until
the
voters accept.
Further, the margin between the rate at which
peers call polls and the rate at which they suffer
undetected damage provides
redundancy in time. A single failed poll has little effect on the safety
of its caller's
replica.

6 Simulation
In this section we give details about the simulation environment and the
metrics we use to evaluate the system's
effectiveness in meeting its goals.

6.1 Evaluation Metrics

We measure the effectiveness of our defenses
against the attrition adversary using four metrics:

Access failure probability: To measure the success of an
attrition adversary at increasing the probability that a
reader obtains
a damaged AU replica, we compute the access failure probability as
the fraction of all replicas in
the system that are damaged, averaged over
all time points in the experiment.

Delay ratio: To measure the degradation an attrition adversary
achieves, we compute the delay ratio as the mean
time between successful polls at loyal
peers with the system under attack divided by the same measurement
without
the attack.

Coefficient of friction: To measure the cost of an attack to loyal
peers, we measure the coefficient of friction,
defined as the
average effort expended by loyal peers per successful poll during an attack divided by their
average per-poll effort absent an attack.
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Cost ratio: To compare the cost of an effortful attack to the
adversary and to the defenders, we compute the cost
ratio, which is the ratio of the
total effort expended by the attackers during an attack to that of the defenders.

6.2 Environment and Adversaries

We run our experiments using Narses [20],
a discrete-event simulator that
provides facilities for modeling
computationally expensive operations,
such as computing MBF efforts and
hashing documents. Narses allows
experimenters to pick from a range of
network models that trade off speed for accuracy.
A simplistic network
model that accounts for
network delays but not congestion, except for the side-effects
of a pipe stoppage
adversary's artificial congestion,
suffices for our current focus on application-level effects.
Peers' link
bandwidths are
uniformly distributed
among three choices: 1.5, 10, and 100 Mbps, and latencies are
uniformly
distributed between 1 and 30 ms.

Nodes in the system are divided into two categories: loyal
peers and the adversary's minions. Loyal peers are
uncompromised peers that execute
the protocol correctly. Adversary minions are nodes that collaborate to
execute the adversary's attack strategy.

We conservatively simulate the adversary as a cluster of
nodes with as many IP addresses and as much compute
power as he needs.
Each adversary minion has complete and instantaneous knowledge of all
adversary state and
has a magically incorruptible copy of all AUs.
Other assumptions about our adversary that are less relevant to
attrition can be
found in [30].

To distill the cost of an attack from other efforts the adversary might
have to shoulder (e.g., to masquerade as a
loyal peer), in these
experiments he is completely outside of the network of loyal peers.
Loyal peers never ask
his minions to vote in polls and he
only asks loyal peers to vote in his polls. This differs
from LOCKSS
adversaries we have studied before [30].

6.3 Simulation Parameters

We evaluate the preservation of a collection of AUs distributed among a
population of loyal peers. For simplicity
in this stage of our
exploration, we assume that each AU is 0.5 GBytes (a large AU in
practice). Each peer
maintains 50 to 600 AUs.
All peers have replicas of all AUs; we do not yet simulate the
diversity of local
collections we expect will evolve over time.
These simplifications allow us to focus our attention on the
common
performance of our attrition resistance machinery, ignoring for the time
being how that performance
varies when AUs vary in size and
popularity.
Note that our 600 simulated AUs total about 10% of the
size of the
annual AU intake of a large journal collection such
as that of Stanford University
Libraries. Adding the
equivalent of 10 of today's low-cost PCs per year
and consolidating them as old
PCs are rendered obsolete is an
affordable
deployment scenario for such a library.
We set
all costs of primitive operations (hashing, encryption,
L1 cache and RAM
accesses, etc.) to match the capabilities of a low-cost PC.

All simulations have a constant loyal peer population of 100 nodes and
run for 2 simulated years, with 3 runs per
data point. Each peer runs
a poll on each of its AUs on average every 3 months. Each poll uses a
quorum of 10
peers and considers landslide agreement as having a maximum
of 3 disagreeing votes. These parameters were
empirically
determined from previous iterations of the deployed beta protocol. We
set the fixed drop probability
to be 0.90 for unknown peers and 0.80 for
indebted peers.

We set the fixed drop probability for indebted peers and the cost of verifying
an introductory effort so that the
cumulative introductory effort
expended by an effortful
attack on dropped invitations is more than the
voter's
effort to consider the adversary's eventually admitted
invitation. Since an adversary has to try with indebted
identities on
average 5 times to be admitted (thanks to the  admission
probability), we set the

introductory effort to be 20% of the total
effort required of a poller; by the time the adversary has gotten his
poll
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invitation admitted, even if he defects for the rest of the poll,
he has already expended on average 100% of the
effort he would have, had he
behaved well in the first place.

Memory limits in the Java Virtual Machine prevent Narses from simulating
more than about 50 AUs/peer in a
single run. We simulate 600-AU collections
by layering 50 AUs/peer runs,
adding the tasks caused by one
layer's 50 AUs to the
task schedule for each peer accumulated during the preceding
layers.
In effect, layer  is a
simulation of 50 AUs on peers already
running a realistic workload of  AUs.
The effect is to over-

estimate the peer's busyness for AUs in higher
layers and under-estimate it for AUs in lower layers;
AUs in a
layer compete for the resources left over by lower layers,
but AUs in lower layers are unaffected by the
resources used in
higher layers.
We have validated this technique against unlayered simulations in
smaller
collections, as well as against simulations in which inflated per-AU preservation
costs cause similar levels of
peer load; we found negligible differences.

We are currently exploring the parameter space but use the following
heuristics to help determine parameter
values. The
refractory period of one day
allows for 90 invitations from unknown or indebted peers to be
accepted per 90-day interpoll interval; in contrast, a peer requires an
average of 30 votes per poll and, because of
self-clocking,
should be able to accept at least an average of 30 poll
invitations per interpoll interval.
Consequently, the one-day
refractory period allows up to a
total of 120 invitations per poll period,
four times the
rate of poll invitations that should be expected
in the absence of attacks.

7 Results
The probability of access failure summarizes the success of an
attrition attack.
We start by establishing a
baseline rate of
access failures absent an attack.
We then assess the effectiveness against this baseline of the
effortless attacks we consider:
network-level flooding attacks on the volume filter in Section 7.2,
and Sybil
attacks on the reciprocity filter in Section 7.3.
Finally, in Section 7.4
we assess against this baseline each of the
effortful attacks
corresponding to each effort filter.

In each case we show the effect of increasing scales of attack on
the access failure probability, and relevant
supporting graphs including
the delay ratio, the coefficient of friction, and for effortful attacks the
cost ratio.

Our mechanisms for defending against an attrition adversary raise
the effort required per loyal peer.
To achieve a
bound on access failure probabilities, one must
be willing to over-provision the system to accommodate the
extra effort.
Over-provisioning the system by a
constant factor defends it against application-level attrition
attacks
of unlimited power (Sections 7.3 and
7.4).

7.1 Baseline



Figure 3:
Mean access failure probability (  axis in

log scale) for increasing interpoll intervals (  axis)
at
variable mean times between storage failure (from 1 to
5 years
per disk), absent an attack. We show results for

collection sizes of 50 AUs (points only) and of 600
AUs (lines and points).
We show minimum and

maximum values for the
2-year data set; this variance
is representative of all measurements,
which we omit

for clarity.

The LOCKSS polling process is intended to detect and recover from
storage damage that is not detected locally,
from causes
such as ``bit rot,'' human error and
attack. Our simulated peers suffer such damage at rates
of one
block in 1 to 5 disk years (50 AUs per disk). This is an aggressively
inflated rate of undetected damage, given
that, for instance, it is
125-400% the rate of detected failures in Talagala's
study of IDE drives in a large disk
farm [45].
Experience with the IDE drives in deployed LOCKSS peers covers about
10 times as many disk years
but with less
reliable data collection; it suggests much lower detected failure rates.

Figure 3 plots access failure
probability versus the interpoll interval. It shows that as the
interpoll
interval
increases relative to the mean interval between storage
failures, access failure probability increases because
damage
takes longer to detect and repair. The access failure probability is
similar for a 50-AU collection all the
way up to a 600-AU collection
(we omit intermediate collection sizes for clarity).

For comparison purposes in the rest of the experiments, the baseline
access failure probability of  for

a 50-AU collection
and of  for a 600-AU collection correspond to our
interpoll interval of 3 months

and a storage damage rate of one block
per 5 disk years. With these parameters, a machine preserving 600 AUs
has an average load of 9%, and a machine preserving 50 AUs
has a 0.7% average load.

Figure 4:
The access failure probability (  axis in log

scale) observed
during repeated pipe stoppage attacks
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of varying duration (  axis in log
scale), covering
between 10 and 100% of the peers.

7.2 Targeting the Volume Filter

The ``pipe stoppage'' adversary models packet flooding and more
sophisticated attacks [26]. This adversary
suppresses all communication between some proportion of the total peer
population (its coverage) and other
LOCKSS peers. During a
pipe-stoppage attack, local readers may still access content. The
adversary subjects a
victim to a period of pipe stoppage lasting between
1 and 180 days. Each attack is followed by a 30-day
recuperation
period, during which communication is restored to the victim; this
pattern is repeated for the entire
experiment. To lower the probability
that a recuperating peer can contact another peer, the adversary
schedules
his attacks such that there is little overlap in peers'
recuperation periods. We performed experiments with an
adversary that
schedules his attacks so that all victims' recuperation periods
completely overlap, but found that
the low-overlap adversary caused
more damage, so we present results from the low-overlap adversary.

Figure 4 plots the access
failure probability versus the attack duration for varying coverage
values (10 to 100%).
As expected, the access failure probability
increases as the coverage of the attack increases, though the attack
covering 70% of the peer population is almost as effective as the 100%
attack. In the extreme, the 180 day attack
over 100% of the 600-AU
collection raises the access failure probability to ; this is within tolerable

limits for services open to the
Internet.

For attacks between 20% and 60% coverage, the access failure probability peaks at
an attack duration of 60 days
and decreases for larger durations. The 180
day attack is less damaging for these coverage values because, while
the adversary focuses on a smaller number of peers for a longer time,
the rest of the peers continue polling. The
30 to 60 day attacks cycle
across more victims and interrupt more polls, wasting peers' time and
tarnishing their
reputations, while 1 to 10 day attacks are
too short to interrupt many polls. As the attack coverage grows
from
70%, the 180 day attack disables such a significant portion of
the network that the peers free of attack have great
difficulty finding
available peers and the access failure probability increases beyond the
60 day attack.

Figure 5:
The delay ratio (  axis in log scale) imposed

by repeated pipe
stoppage attacks of varying duration (
 axis in log scale)
and coverage of the population.

Absent an
attack, this metric has value 1.

Figure 6:
The coefficient of friction (  axis in log

scale) imposed by
pipe stoppage attacks of varying
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duration (  axis in log scale)
and coverage of the
population.

Figures 5
and 6 plot the delay ratio and
coefficient of friction, respectively, versus attack duration. We find that
attacks must last longer than 30 days to
raise the delay ratio by an order of magnitude. Similarly, the
coefficient
of friction during repeated attacks that last less than a
few days each is negligibly greater than 1. For very long
attacks that
completely shut down the victim's Internet, the
coefficient can reach 6700, making pipe stoppage the
most cost-effective
strategy for the attrition adversary.

As attack durations grow to 30 days and beyond, the adversary succeeds
in decreasing the total number of
successful polls. For example,
attacks against 100% of the population with a 30 day duration reduce the
number
of successful polls to  the number absent attack.
However, the average machine load during
recuperation

remains within 2 to 3 times the baseline load -- a result
of designing the protocol to limit increases in resource
consumption
while under attack. Fewer successful polls and nearly constant
resource consumption for increasing
attack durations drives up the
average cost of a successful poll, and with it the coefficient of
friction.

Figure 7:
The access failure probability (  axis in log

scale) for
attacks of increasing duration (  axis in log
scale) by the admission
control adversary over 10 to

100% of the peer population. The scale
and size of the
graph match Figures 3 and
4 to facilitate comparison.

7.3 Targeting the Reciprocity Filter

The reciprocity adversary attacks our admission control defenses aiming
to reduce the likelihood of a
victim
admitting a loyal
poll request by triggering that victim's refractory
period as often as possible. This adversary
sends cheap garbage
invitations to varying fractions of the peer population for varying periods of
time separated
by a fixed recuperation period of 30 days. The adversary
sends invitations using poller addresses unknown to the
victims. These, when eventually admitted, cause those victims to enter
their refractory periods and drop all
subsequent invitations from unknown and indebted peers.

Figure 7 shows that these attacks have
little effect. The
access failure probability is raised to  when

the duration of the attack reaches the entire duration of our
simulations (2 years) for full population coverage
and a 600-AU collection. At that attack
intensity, loyal peers no longer admit poll invitations from unknown or
indebted loyal peers, unless supported by an introduction. This causes
discovery to operate more slowly; loyal
peers waste their
resources on introductory effort proofs that are summarily rejected by
peers in their refractory
period. This wasted effort, when sustained
over years, raises the coefficient of friction by 33%, (much less than
the
friction caused by pipe stoppage), and raises average machine load from
9% to 11%. The delay ratio is



largely
unaffected by this adversary.
Consequently, the first effect of this adversary, increasing load in
loyal
peers, is tolerable given
a practical level of over-provisioning.

We switch our attention to the other effect of this adversary, namely, the
suppression of invitations from
unknown or indebted peers, which
introductions are intended to mitigate. We have repeated
the experiments
with 600 AUs, in which the adversary attacks 100% of
the peer population, with introductions disabled. Without
introductions, the shorter attacks cause a higher coefficient of
friction, much closer to pipe stoppage attacks,
whereas longer attacks
are largely unaffected. For comparison, suppressing introductions for
attack durations of
10 days raises the coefficient of friction from 1.03
to 1.16, vs. 1.51 for pipe stoppage; in contrast, suppressed
introductions for attack durations of six months raises the coefficient
of friction from 1.34 to 1.36, vs. 6700 for
pipe stoppage. The absence
of introductions does not make this attack markedly worse in terms of
load increase.

The major consequence of unknown and indebted invitation
suppression without introductions is that victims
call polls almost exclusively
composed of voters from their friends list, who are more likely to
accept a poll
invitation from a fellow friend. This reliance increases
as the attack lasts longer.
It is undesirable because it
allows an adversary to predict
closely the membership of a poll (mostly the poller's friends), promoting
focused
poll disruptions.
The main function of introductions is thus to
ensure the unpredictability of poll memberships.

Note that techniques such as blacklisting,
commonly used to defeat denial-of-service attacks in the context of
email spam, or server selection [17] by which pollers
only invite voters they believe will accept, could
significantly reduce
the friction caused by the admission control attack. However, we have yet to explore
whether
these defenses are compatible with our goal of protecting against
subversion attacks that operate by
biasing the opinion poll sample toward
corrupted peers [30].

7.4 Targeting the Effort Filters

To attack filters downstream of the reciprocity filter, the
adversary must get through as fast as possible. We
consider
an attack by a ``brute force'' adversary
who continuously sends enough
poll invitations with valid
introductory efforts to
get past the random drops; such invitations cannot arrive from credit or
even identities at
the steady attack state, because they are more frequent
than what is considered
legitimate. Since unknown peers
suffer more random drops than peers in debt,
the adversary
launches attacks from indebted addresses. We
conservatively
initialize all adversary addresses with a debt grade at all loyal peers. We also give
the adversary
an oracle that allows him to inspect all the loyal
peers' schedules.
This avoids his wasting introductory efforts
due to scheduling conflicts at loyal peers.

Once through the reciprocity filter, the adversary can defect at
any stage of the protocol exchange: after
providing
the introductory effort in the Poll message (INTRO) by never
following up with a PollProof, after
providing the remaining
effort in the PollProof message (REMAINING) by never following up
with an
EvaluationReceipt, or not defecting at all (NONE).

Table 1:
The effect of the brute force adversary
defecting at various points in the protocol on the

coefficient of
friction, the cost ratio, the delay ratio,
and the access failure
probability. For each point,

the upper numbers correspond to the 50-AU
collection and the lower numbers correspond to the

600-AU collection.

Defection Coeff. Cost Delay Access

  friction ratio ratio failure
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INTRO

 

REMAIN-

ING

NONE

 

Table 1 shows that the brute
force adversary's most cost-effective strategy (i.e., with the lowest cost ratio
metric)
is to participate fully
in the protocol; doing so he can raise loyal peers'
preservation cost (i.e., their coefficient of
friction) to a factor of 
(  for the large collection, which equates to an average machine
load of 21%).
To
defend against this increase in cost, LOCKSS peers must over-provision
their resources by a reasonable amount.
The baseline probability of access failure rises to  at a cost almost identical to that incurred by the

defenders (a cost ratio of ). Fortunately, this continuous attack
even from a brute force adversary
unconcerned by his own effort
expenditure is unable to increase the access failure probability of the
victims
greatly; the rate limits prevent him from bringing his advantage
in resources to bear. Similar behavior in earlier
work [30] prevents a different
unconstrained adversary from stealthily modifying content.

Figure 8:
Coefficient of friction during brute force
attacks against 50
AUs. The refractory period varies

from 1 to 96 hours.

We measured the effectiveness of the refractory period in rate limiting
poll flood attacks against the brute force
adversary that does not defect, since this
strategy has the best cost/benefit ratio among the brute force strategies.
Figure 8 shows the
coefficient of friction during a brute force attack on 50 AUs where the
refractory period
varies from 1 to 96 hours.
With a shorter refractory period, poll invitations from the attacker are
accepted by the
victims at a greater rate, driving up the coefficient of
friction. With the refractory period at one hour, the average
machine load at the victim peers is 21%. If only 50 AUs
consume 21% of a peer's processing time, an average
peer cannot support
600 AUs while under attack. With the refractory period of
24 hours, the peers' average load
supporting 50 AUs is
only 2%.

On the other hand, the graph shows that lengthening the refractory
period beyond 24 hours would not greatly
reduce the coefficient of friction.
Furthermore,
increasing the refractory period decreases the probability of a
peer
accepting legitimate poll invitations from unknown or indebted peers,
since voters accept fewer of these
invitations per unit time. A very
long refractory period stifles the discovery process of pollers
finding new voters
and causes increased reliance on a poller's friends
list. Similar behavior occurs when introductions are removed
from the
protocol (see Section 7.3).
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Thus a shorter refractory period increases the probability of voters
accepting invitations from legitimate,
unknown pollers, but it also
increases damage during a poll flood attack. Our choice of 24 hours
limits the harm
an attacker can do while accepting enough legitimate
poll invitations from unknown or indebted peers for the
discovery process
to function.

In the analysis above, we conservatively assume that the brute force
adversary uses
attacking identities in the
debt grade of their
victims.
Space constraints lead us to omit experiments with an adversary
whose minions may
be in either even or credit grade.
This adversary polls a victim only after he has supplied that
victim with a vote,
then defects in any of the ways described above.
He then recovers
his grade at the victim by supplying an
appropriate number of valid
votes in succession.
Each vote he supplies is used to introduce new minions that
thereby
bypass the victim's admission control before defecting.
This attack requires the victim to invite minions
into polls
and is sufficiently rate-limited to be less effective than brute
force. It is further limited by the decay of
first-hand reputation
toward the debt grade. We leave
the details for an extended version of this paper.

8 Related Work
In this section we first describe the most significant ways
in which the new LOCKSS protocol differs
from our
previous efforts. We then list work that
describes the nature and types of denial of service attacks,
as well as
related work
that applies defenses similar to ours.

The protocol described here is derived from earlier
work [30] in which we covered
the background of the
LOCKSS system.
That protocol used redundancy, rate limitation, effort balancing, bimodal
behavior (polls must
be won or lost by a landslide) and friend bias (soliciting
some percentage of votes from peers on the friends list)
to prevent powerful adversaries from
modifying the content without detection, or discrediting the
system with
false alarms.
In this work, we target the protocol's
vulnerability to attrition attacks by reinforcing
our previous
defenses with admission control, desynchronization,
and redundancy.

Another major difference between
our prior work and the protocol described in this paper is our treatment
of
repair. In the previous protocol voting and repair were
separated into two phases. When pollers determined
repair
was necessary, they requested a complete copy of the document from
the publisher, if still available, or
from a peer for whom they
had previously supplied votes. This had at least three problems. First,
pollers
requested repairs only when needed, signaling the
vulnerability of those pollers' content to an adversary.
Second,
the repair
mechanism was only exercised when content recovery was needed. Mechanisms
exercised only during
emergencies are unlikely to work [35]. Finally,
this left the system more vulnerable to free-riding, since a peer
could
supply votes but later defect when the poller requested a costly repair.
We address all three problems
through restructuring the repair mechanism
(as described in Section 4.3)
to integrate block repairs,
including
``frivolous'' repairs, into the actual evaluation of votes.

A third significant difference in the protocol
supports our desynchronization defense. In the previous protocol,
loyal
pollers needed to find a quorum of voters who could simultaneously
vote on an AU. Instead, the poller
now
solicits and obtains votes one at a time, across the duration of a
poll, and only evaluates the outcome
of a
poll once it has accumulated all requisite votes.

Our attrition adversary draws on a wide range of work in
detecting [23],
measuring [33],
and
combating [2,27,41,42]
network-level DDoS attacks capable of
stopping traffic to and from our peers.
This work
observes that current
attacks are not simultaneously of high intensity, long duration,
and high coverage (many
peers) [33].

Redundancy is a key to survival during some DoS attacks,
because pipe stoppage appears
to other peers as a
failed peer. Many systems use redundancy to mask
storage failure [25]. Byzantine Fault Tolerance [7]
is related
to the LOCKSS opinion polling mechanism in its goal
of managing replicas in the face of attack. It provides
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stronger
guarantees but requires that no more than one third of the replicas
are faulty or misbehaving. In a
distributed system, such as the LOCKSS system, that is spread
across the Internet, we cannot assume an upper
bound on the number of
misbehaving peers. We
therefore aim for system performance to degrade gracefully
with increasing numbers of misbehaving peers, rather than fail suddenly
when a critical threshold is reached.
Routing along multiple redundant paths in Distributed Hash Tables (DHTs)
has been suggested as a way of
increasing the probability that
a message arrives at its intended recipient despite nodes dropping
messages due to
malice [6] or pipe
stoppage [24].

Rate limits are effective in slowing the
spread of viruses [43,48].
They have also been suggested for limiting the
rate at which peers can
join a DHT [6,47] as a
defense against attempts to control part of the hash space.
Our
work suggests that DHTs will need to rate limit not only joins
but also stores to defend against attrition attacks.
Another
study [40] suggests that the increased
latency this causes will not affect users' behavior.

Effort balancing is used as a defense against spam, which
may be considered an application-level DoS attack and
has received
the bulk of the attention in this area. Our effort balancing defense draws
on pricing via processing
concepts [15]. We measure cost by
memory cycles [1,14]; others use CPU
cycles [4,15]
or even Turing
tests [44].
Crosby et al. [10] show that
worst-case behavior of application algorithms can be exploited in
application-level DoS attacks; our use of nonces and the bounded verification
time of MBF avoid this risk. In the
LOCKSS system we avoid strong peer
identities and infrastructure changes, and therefore rule out many
techniques for
excluding malign peers such as Secure Overlay
Services [24].

Related to first-hand reputation is the use of game-theoretic analysis
of peer behavior by
Feldman et al. [17]
to
show that a reciprocative strategy
in admission control policy can motivate
cooperation among selfish peers.

Admission control has been used to improve the usability of overloaded
services. For example,
Cherkasova et
al. [8]
propose admission control strategies that help protect long-running
Web service sessions (i.e., related
sequences of requests) from abrupt termination. Preserving the responsiveness of
Web services in the face of
demand spikes is critical,
whereas LOCKSS peers need only manage their resources to make progress
at
the
necessary rate in the long term. They can treat demand spikes
as hostile behavior.
In a P2P context, Daswani et
al. [11]
use admission control (with rate limiting) to mitigate the effects
of a query flood attack against
superpeers in unstructured
file-sharing peer-to-peer networks.

Golle and Mironov [21] provide compliance enforcement in
the context of distributed computation using a
receipt technique similar
to ours. Random auditing using challenges and hashing has been
proposed [9,47] as a
means of enforcing trading
requirements in some distributed storage systems.

In DHTs waves of synchronized routing updates caused
by joins or departures result in instability during periods
of high
churn. Bamboo's [36] desynchronization defense
using lazy updates is effective.

9 Future Work
We have three immediate goals for future work. First, we observe that although the protocol is symmetric, the
attrition adversary's use of it is asymmetric. It may be that
adaptive behavior of the loyal peers can exploit this
asymmetry. For
example, loyal peers could modulate the probability of acceptance of a
poll request according to
their recent busyness. The effect would be
to raise the marginal effort required to increase the loyal peer's
busyness as the attack effort increases. Second, we need to
understand how our defenses against attrition work in
a more dynamic
environment, where new loyal peers continually join the system over
time. Third, we need to
consider combined adversary strategies;
an adversary could weaken the system with an attrition attack
in
preparation for some other type of attack.
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10 Conclusion
The defenses of this paper equip the LOCKSS system to resist attrition
well. First, application-level attrition
attacks, even from adversaries with no
resource constraints and sustained for two years, can be defeated with
reasonable over-provisioning. Such over-provisioning is natural
in our application, but further work may
significantly reduce the required
amount.
Second, the strategy that provides an unconstrained adversary with the
greatest
impact on the system is to behave as a large number of new loyal peers.
Third, network-level attacks do
not affect the system significantly
unless they are (a) intense enough to stop all communication between
peers,
(b) widespread enough to target all of the peers,
and (c) sustained over months.

Digital preservation is an unusual application, in that the goal is to
prevent things from happening. The LOCKSS
system resists failures and attacks from powerful
adversaries without normal defenses such as long-term secrets
and
central administration. The techniques that we have developed
may be primarily applicable to preservation,
but we hope that our conservative design will assist others in building systems that
better meet society's need for
more reliable and defensible systems.

Both the LOCKSS project and the Narses simulator are hosted at
SourceForge, and both carry BSD-style Open
Source licenses.
Implementation of this protocol in the production LOCKSS system is in
progress.
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