Bypassing HTTP Strict Transport Security

Jose Selvi
jselvi@pentester.es

Abstract—For the last few years, some different attacks
against SSL/TLS have been released. Some of them based on
cryptography or protocol weaknesses such as BEAST, CRIME,
BREACH, etc, and some others, such as SSLStrip, based on
rewriting HTTPS links into HTTP ones and keep user com-
munications always in HTTP. In order to protect users against
SSLStrip attacks, a new protection called HTTP Strict Transport
Security (HSTS) has been developed and it’s currently supported
by most widely used browsers.

However, under certain circumstances, an attacker could
exploit an inter-operation vulnerability in order to bypass HTTP
Strict Transport Security protection and use other well-known
attack techniques such as SSLStrip. In this paper, we review
the HSTS strengths and weaknesses, and we go in-depth on this
inter-operation vulnerability and how it could be exploited.

I. BRIEF HISTORY OF BYPASSING SSL

SSL/TLS is certainly one of the most important protocols in
the security field since on it relies our communications privacy
and security. Because of that, it’s a target for both attackers
and security professionals.

In the past few years some different techniques have been
presented. Some of them focused on design weaknesses such
as BEAST [1], CRIME [2] or BREACH [2], some other
based on exploting some implementations weaknesses such as
HeartBleed or the famous Apple goto fail vulnerability.

Moxie Marlinspike [4] presented one of the most used
techniques, based on stripping a previous HTTP connection
by rewriting all the HTTPS links into HTTP ones, changing
properties of cookies and other similar changes. Since users
usually type only website name in his browser and not the full
URL, their fists connection would be an HTTP one, so it could
be intercepted and stripped.

II. HTTP STRICT TRANSPORT SECURITY

HTTP Strict Transport Security [5] (also known as HSTS or
STS) is the industry response for the Moxie’s stripping attacks
and his tool SSLStrip.

HSTS protocol defines a new HTTP header called ’Strict-
Transport-Security’ that can be sent by a webserver to his
clients in order to specify a new policy regarding how the
browser in going to handle the future connections.

There are two main parameters in an HSTS policy. One of
them is 'max-age’ that represents the amount of seconds that
the browser should connect in HTTPS-only mode. As a result,
a browser that receive an HSTS policy with 'max-age:1000°
from *mywebsite.com’ would stay using HTTPS if the user
clicks on HTTP links or even if the user type an HTTP link.
That policy would be active for the following 1000 seconds

from the last HTTPS connection. After that, the policy outdates
and the browser returns to his usual behavior.

An optional parameter in an HSTS is *IncludeSubdomains’.
If this parameter is set, then the HSTS policy applies to the
visited domain and all the subdomains as well. If not it only
applies to the exact domain that the user has visited.

In addition, an HSTS policy prevents an user from ac-
cepting self-signed or abnormally signed certificates, since
remember the certification authority (CA) that signed the
previous seen certificate.

Unfortunately, HSTS is not a security feature that is
currently widely deployed in the Internet, since just a few
websites use it. However, some reference companies such as
Twitter, Paypal or Google use this security feature.

Most desktop browsers support this security feature as
well. Some of them share a ’Preloaded HSTS’ list [6][7]
that contains a domain list of hosts that should be configured
automatically even before the first HTTPS connection, so users
remain protected after a fresh install or after wiping out their
local state.

III. NETWORK TIME PrROTOCOL (NTP)

The Operating Systems use the Internet for a big amount
of internal tasks or features such as software updates, the
OS activation itself and so on. One of those features is the
Time Synchronization. By default, almost all the desktop
operating systems automatically synchronize its time with In-
ternet Servers usually owned by the operating system provider
(for example "time.windows.com’ for Microsoft operating sys-
tems).

All of them use different versions (v3 or v4) of the Network
Time Protocol (NTP) [8][9][10] that is widely used to provide
time synchronization between computers.

NTP messages are sent via UDP packets (123/UDP). The
message format is the same for both requests and responses,
but each peer use a different set of fields and ignore the rest
of them.

Most important fields are:

e Leap (LI): Leap is a warning indicator that should be
usually set to zero. Clients often set this value to 3
(clock unsynchronized) when request time synchro-
nization.

e Version (VN): NTPv3 (3) or NTPv4 (4).

e Mode: Usually client (3) or server (4) depending if it is
a request or a response. Other values are also possible
but they are not used in by default NTP configuration.

0123456 7 8 91011121314 151617 18 1920 21 22 23 24 2526 27 28 2930 31
L VN Mode Stratum Poll Precisién
Root Delay
Root Dispersion

Reference Identifier

Reference Timestamp (64)
Originate Timestamp (64)
Receive Timestamp (64)

Transmit Timestamp (64)

Key Identier (optional) (32)

Message Digest (optional) (128)

Fig. 1. NTP Packet

e Stratum: Usually from 2 to 15. Values 0 and 1 are used
by reference clocks and primary servers and shouldn’t
be used by NTP servers.

e Precision: Usually -18 or -20 (microseconds). Preci-
sion of the system clock. Value in log2 seconds.

e Root delay & dispersion: Total round-trip and dis-
persion from de reference clock. Value in NTP short
format.

L] 1 2 3
01234567890123456789012345678901

| Seconds | Fraction

Fig. 2. NTP Short Format

e Reference identifier: Server identifier, usually his IP
Address.

e Timestamps: Different values that are used by the
client in order to calculate the current date and time.
Values in NTP format

[} 1 2 3
01234567890123456789012345678901
bbb ; ; ; - —

| Seconds

- '

| Fraction
Fotatat +

Fig. 3. NTP Format

NTPv4 supports authentication based on asymmetric cryp-
tography. The server signs NTP messages using his own private
key. As a result, clients can verify messages integrity, so Man-
in-the-Middle techniques shouldn’t be possible.

However, none operating system use authentication, so all
of them would be vulnerable to Main-in-the-Middle attacks.

IV. DELOREAN: AN NTP MITM TOOL

In order to perform NTP Man-in-the-Middle attacks, a new
tool called 'Delorean’ has been developed and it is available
for download at Github. His name, as you probably know, is
a reference to the well-known 80’s film ’Back to the future’
and its time machine.

Delorean is a python script based on the kimifly’s tool
‘ntpserver’ [11] but adding some additional options for on-
the-fly manipulation.

$./delorean.py -h

Usage: delorean.py [options]

Options:

-h, --help show this help message and exit

-1 INTERFACE, --interface=INTERFACE
Listening interface

-p PORT, --port=PORT Listening port

-n, --nobanner Not show Delorean banner

-s STEP, --force-step=STEP
Force the time step: 3m (minutes), 4d (days), 1M
(month)

-d DATE, --force-date=DATE

Force the date: YYYY-MM-DD hh:mm[:ss]
-k SKIM, --skim-step=SKIM
Skimming step: 3m (minutes), 4d (days), 1M (month)
-t THRESHOLD, --skim-threshold=THRESHOLD
Skimming Threshold: 3m (minutes), 4d (days), 1M
(month)

-r, --random-date Use random date each time

Delorean can be used in five different modes:

e Automatic: If not other mode is selected, Delorean
works in an automatic mode. In this mode, Delorean
tries to find a date at least 1000 days in the future with
the same month day and weekday than the current one.
It makes harder for the user to detect that something
happened on his computer clock.

e Step mode (-s): Using this mode you can choose how
many seconds, hours, days, etc you want to jump to
the future. The base date and time are the local date
and time in the host that runs Delorean.

e Date mode (-d): Using this mode you can choose the
exact date and time when you want to jump to the
future.

e Random mode (-r): This mode makes Delorean to
answer with different date and time on each response.
Useful for testing integer overflows and other similar
issues in NTP implementations.

e Skimming Attack (-k & -t): This mode makes De-
lorean work in a different way. It is compatible with
all the previous modes but it jumps to the future in
several steps (-k) instead of a single one. The flag ’t’
makes Delorean to jump that amount of time before
the ’-k’ time.

Delorean can’t intercept communications itself, so it should
be used with other tools such as arpspoof + iptables, metas-
ploit’s fakedns, etc.

V. TIME SYNCHRONIZATION IN MAJOR OS

Even though all major operating systems use NTP as a
Time Synchronization Protocol over the Internet, they use it
in a different ways. Some of them synchronized each few
minutes, some others only under certain circumstances or using
more complex algorithms.

A. Ubuntu Linux

Ubuntu Linux perhaps is the most widely used desktop
linux distribution.

It doesn’t run a NTP daemon itself but it is configured
by default to synchronized via 'ntpdate’ command each time
a network interface goes up. It uses unauthenticated NTPv4
messages, so it is be vulnerable to MitM attacks.
$ ls /etc/network/if-up.d/

000resolvconf avahi-daemon
avahi-autoipd ethtool

ntpdate
upstart

wpasupplicant

In those environments where an attacker could control the
physical medium (fake AP, switch controlling, deauthentica-
tion) he could force an interface down and up. When going
up, the time would be synchronized, so it could be intercepted
and manipulated by Delorean.

B. Fedora Linux

Fedora Linux perhaps is another widely used desktop linux
distribution.

Unlike what happens with Ubuntu, Fedora runs a NTP
daemon called ’chronyd’ that synchronizes each minute. It
uses unauthenticated NTPv3 messages, so it is be vulnerable
to MitM attacks. The default chrony configuration use the
parameter 'rtcsync’ witch means that the system time is copied
to the real time clock each 11 minutes.

netstat -anp | grep 123
udp 0 0 0.0.0.0:123 0.0.0.0:x 540/chronyd
udp6 0 0 :::123 D 540/chronyd

Waiting up to one minute, an attacker could intercept and
manipulate that communication with Delorean and control the
desktop’s system time. After up to 11 minutes of intercepting
those messages, the new time would be applied to the host.

C. Mac OS X Lion

Mac OS X Lion (probably all pre-Mavericks versions) runs
a NTP daemon called ’ntpd’ [12] that synchronizes each 9
minutes. It uses unauthenticated NTPv4 messages, so it is be
vulnerable to MitM attacks.

09:02:18.166708 IP 192.168.1.100.123 > 17.72.148.53.123: NTPv4, Client, length 48
09:02:18.224746 IP 17.72.148.53.123 > 192.168.1.100.123: NTPv4, Server, length 48
09:11:20.059792 IP 192.168.1.100.123 > 17.72.148.53.123: NTPv4, Client, length 48
09:11:20.116683 IP 17.72.148.53.123 > 192.168.1.100.123: NTPv4, Server, length 48
09:20:17.951361 IP 192.168.1.100.123 > 17.72.148.53.123: NTPv4, Client, length 48
09:20:18.013108 IP 17.72.148.53.123 > 192.168.1.100.123: NTPv4, Server, length 48

Waiting up to 9 minutes, an attacker could intercept and
manipulate that communication with Delorean and control the
desktop’s system time.

D. Mac OS X Mavericks

Mac OS X Mavericks changed its time synchronization
model. The 'ntpd’ daemon [12] still exists but it sends NTP
messages in a less predictable way. However, even not being
predictable, you should be able to intercept at least one NTP
message waiting for some minutes.

20:57:59.038956 IP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
20:57:59.247494 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48
21:06:53.259078 IP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
21:06:53.462394 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48
21:15:54.423944 TP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
21:15:54.629670 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48
21:32:24.624282 TP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
21:32:24.833084 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48
21:57:18.017906 IP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
21:57:18.211821 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48
22:30:32.740008 IP 192.168.1.100.123 > 17.151.16.21.123: NTPv4, Client, length 48
22:30:32.930711 IP 17.151.16.21.123 > 192.168.1.100.123: NTPv4, Server, length 48

Mac OS X Mavericks synchronizes each 9 minutes, as
other Mac OS Xs, but the synchronization interval increase
when the computer is not being intensive using. For example,
in an unattended MacBook it increases up to around 30 minutes
or even more.

$ ps —ef | grep ntpd

0 44 1 0 8:50PM 22 0:00.04 /usr/sbin/ntpd -c /private/etc/ntp-restrict.conf
-n -g -p /var/run/ntpd.pid -f /var/db/ntp.drift

In Mavericks the ntpd daemon doesn’t change the system
time by its own. It writes the detected drift in the file
’/var/db/ntp.drift’. There is also another important difference.
The daemon in launched with the ’panicgate’ option. It makes
the ntpd daemon to accept big time adjustments (more than
1000 seconds by default) but only once.

$ ps -ef | grep pacemaker
0 60 1 0 8:50PM 22 0:00.10 /usr/libexec/pacemaker -b -e 0.0001 -a 10

The second one daemon is called ’pacemaker’ [13] and it
is checking the drift file for changes each 10 seconds. It slew
the clock or completely change it with the new date and time
depending on the adjustment needed.

There is an exception in this process. When the user opens
the ’Date & Time Preferences’ the system clock automatically
updates and any security restriction is consider.

E. Microsoft Windows

Microsoft Windows is the securest NTP implementation
from the major operating systems. It doesn’t use authentica-
tion (in a standalone configuration) but it implements some
additional security features that make more difficult a reliable
exploitation.

One of them is the synchronization period. Windows by
default only synchronizes once a week: Sunday at 02:00. If
the computer is not running then, the synchronization is made
in the next boot (if it’s in the next three days).

The second security feature is the *MaxPosPhaseCorrec-
tion’ and ’MinPosPhaseCorrection’ parameters that are set in
the windows registry (HKEY_LOCAL_MACHINE
SYSTEM\ CurrentControlSet\Services\ W32Time\ Config).
These parameters specify the maximum and minimum amount
of seconds that the clock can be adjusted by the time
synchronization. Any time update greater is automatically
ignored. In windows desktop systems such as Windows 7 or
8, these parameters are set to 15 hours, while in servers such
as Windows Server 2012 they are set to 48 hours [14].

As a result, there is a narrow attack surface in a default
configured windows computer. However, there are lots of non
official articles in the Internet that recommend to synchronize
the time more often, maybe each hour or even each 5 minutes.
If the user set up his computer in order to synchronize
more often than his own MaxPosPhaseCorretion time then his
computer would become vulnerable to Time Skimming attacks.

There is an exception in this process. When the user
manually requests a time synchronization, when any security
restriction is consider.

VI. TIME SKIMMING ATTACK

A Time Skimming Attack works in a similar way than a
’Stone Skimming’ effect. Perhaps the attacker can’t jump to
the proper date in the future, but if he can jump a few seconds
before the next time synchronization then he could reach the
proper date by doing multiple jumps to the future.

./delorean.py -k 12h -t 30s

Sent to 192.168.10.31:123
Sent to 192.168.10.31:123

Going to the future! 2014-09-27 01:32 [4] http://www.thoughtcrime.org/software/sslstrip/
Going to the future! 2014-09-27 13:32

Sent to 192.168.10.31:123 — Going to the future! 2014-09-28 01:32 [5] https://tools.ietf.org/html/rfc6797

Sent to 192.168.10.31:123 - Going to the future! 2014-09-28 13:32 . .

Sent to 192.168.10.31:123 - Going to the future! 2014-09-29 01:32 [6] http://dev.chromium.org/sts

Sent to 192.168.10.31:123 - Going to the future! 2014-09-29 13:32
cont to 192 168.10 31:123 — Going to the future! 2014-09-30 01:32 [7]1 https://developer.mozilla.org/en-US/docs/Web/Security/HTTP_strict_transport_securit
Sent to 192.168.10.31:123 - Going to the future! 2014-09-30 13:32 . .

Sent to 192.168.10.31:123 - Going to the future! 2014-09-01 01:32 [8] https//tOOISletforgmtm]'/rfC1308

Sent to 192.168.10.31:123

Going to the futurel 2014-09-01 13:32 [9] https://tools.ietf.org/html/rfc5905
[10] https://tools.ietf.org/html/rfc4330
Some Windows or Mac OS X configurations could be [111 htps:/github.com/limifly/ntpserver

vulnerable to this kind of attacks. [12] https://developer.apple.com/library/mac/documentation/Darwin/Reference/
ManPages/man1/ntpd.1.html

[13] https://developer.apple.com/library/mac/documentation/Darwin/Reference/
ManPages/man8/pacemaker.8.html
Using the Delorean tool, under certain circumstances and [14] http://technet.microsoft.com/es-es/library/dd723684(v=ws.10).aspx

configurations, could allow to manipulate the system time [15] http://support2.microsoft.com/kb/884776/es

and force the HSTS policies to expire. However, there is an

extra security feature in browsers: the preloaded HSTS. When

reading its documentations it seems that preloaded hosts are

enforced by default so they wouldn’t be vulnerables to time

manipulation attacks but the real truth is that those hosts are

"preloaded’ but not ’static’ on most browsers, so they would

be vulnerable as well.

VII. BROWSERS & PRELOADED HSTS

For example in Chrome, the enforced hosts in the
’Preloaded HSTS’ list are configured with a 1000 days policy.
These policies can be overwritten when the browser visits de
host for the first time.

net_internals_ul.cc Layers ~ | Find ~
void NetInternal ler:: 1

const b istvalue* list) {

7/ |1ist| should be: [<domain to query», <STS include subdomains>, <PKP

// include subdomains>, <key pins>].

std::string domain;

CHECK(List->GetString(0, &domain));

if (1IsStringASCII(domain)) {
// Silently fail. The user will get a helpful error if they query for the
7/ name.
return;

bool sts_include_subdomains;
CHECK(1ist->GetBoolean(1, &sts_include_subdomains));
bool pkp_include_subdomains;
CHECK(1ist->GetBoolean(2, &pkp_include_subdomains));
std::string hashes_str;

CHECK(1ist->GetString(3, &hashes_str));

net::TransportSecurityState* transport_security state =
GetMainContext ()->transport_security_state();
if (1transport_security_state)
return;

base::Time expiry = base::Time::Now() + base::TimeDelta::Frombays(1000);
net: :HashvalueVector hashes;
if (lhashes_str.empty()) {
if (1Base64StringToHashes (hashes_str, &hashes))
return;

}

port_security_ expiry, sts_include_subdomains);
transport_security_state->AddHPKP (domain, expiry, pkp_include_subdomains,

Fig. 4. Chrome Source Code

Only one tested browser, Safari, seems to configure those
preloaded hosts as a static values (’inf’/’-inf’), so hosts
preloaded by Safari couldn’t be attacked using these tech-
niques.

VIII. CONCLUSION

We have reviewed how the major desktop operating sys-
tems work regarding its time synchronization and we have
found that, on certain systems and under certain circumstances,
an NTP MitM attack is possible and it could be used in order
to force HSTS policies to expire. We have developed a NTP
MitM tool, called Delorean, that could be used to perform the
proposed attacks.

REFERENCES

[1] J.Rizzo and T.Duong, BEAST, Ekoparty 2011.
[2] J.Rizzo and T.Duong, CRIME, Ekoparty 2012.
[3] A.Prado, N.Harris and Y.Gluck, BREACH, Black Hat USA 2013.

