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ABSTRACT

Event detection in social media is an important but challeng-
ing problem. Most existing approaches are based on burst
detection, topic modeling, or clustering techniques, which
cannot naturally model the implicit heterogeneous network
structure in social media. As a result, only limited informa-
tion, such as terms and geographic locations, can be used.
This paper presents Non-Parametric Heterogeneous Graph
Scan (NPHGS), a new approach that considers the entire
heterogeneous network for event detection: we first model
the network as a “sensor” network, in which each node senses
its “neighborhood environment” and reports an empirical p-
value measuring its current level of anomalousness for each
time interval (e.g., hour or day). Then, we efficiently max-
imize a nonparametric scan statistic over connected sub-
graphs to identify the most anomalous network clusters. Fi-
nally, the event represented by each cluster is summarized
with information such as type of event, geographical loca-
tions, time, and participants. As a case study, we consider
two applications using Twitter data, civil unrest event detec-
tion and rare disease outbreak detection, and present empir-
ical evaluations illustrating the effectiveness and efficiency of
our proposed approach.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION

Social microblogs such as Twitter and Weibo are experi-
encing explosive growth, with billions of users globally shar-
ing their daily observations and thoughts online. Unlike tra-
ditional channels, where collection of information such as pa-
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tient data, crimes, and financial transactions is costly and
time consuming, social media provides the vast amount of
data available in real time on the internet at almost no cost.
Social media also helps spread information earlier and faster
than traditional media. For example, Twitter first leaked
credible word of Osama bin Laden’s death before President
Obama’s announcement, and there were a half million tweets
(and only 800 news mentions) one hour after the event [1].
As a social “sensor” which can identify emerging patterns in
sentiments and opinions, the use of social media holds great
promise for detection and forecasting of significant societal
events.

However, the size and complexity of social media datasets
create a number of technical challenges. First, the language
used in social media is highly informal, ungrammatical, and
dynamic, and thus traditional natural language processing
(NLP) techniques cannot be directly applied. Second, so-
cial media is naturally structured as a heterogeneous graph,
with entities such as user, post, geographic location, term,
hashtag, and link; and relationships such as follower, friend-
ship, reply, retweet, and spatial neighborhood. In addition,
the attributes of each entity type could be heterogeneous as
well. For example, a user may have daily attributes such as
the numbers of active followers, posts, and retweets, while a
tweet may have attributes such as the number of terms and
the sentiment score. Finally, the size of data necessitates
development of new, scalable detection methods.

This paper focuses on the problem of domain-specific event
detection and forecasting, for events such as disease out-
breaks, civil unrests, and financial crises. Most existing ap-
proaches to event detection can be classified into three cate-
gories, including burst detection, geographic topic modeling,
and clustering. Burst detection-based approaches search
for space-time regions where the aggregated counts of some
predefined terms are abnormally high compared with the
counts outside the regions [9, 10, 13]. Sakaki et al. con-
sider spatial-temporal Kalman filtering, which is similar to
space-time burst detection, to track the geographical tra-
jectory of hot spots of tweets related to earthquakes [19].
Geographic topic model-based approaches estimate lan-
guage distributions (over a predefined vocabulary) that are
distinct in some geographic regions [25, 11, 8]. Cluster-
ing-based approaches search for novel clusters of documents
or terms using predefined similarity metrics, such as cosine
similarity and social similarity for documents [22], or auto-
correlations [24] and co-occurrences [20, 23] for terms. Simi-
larly, [21] uses features related to text content and link infor-
mation to cluster tweets. For each cluster identified, the re-



lated documents may have different geographical locations,
which can be combined by weighted voting [22].

We note that these domain-specific event detection ap-
proaches differ in focus from general-domain event detection
methods such as RW-Event [3], which attempt to distinguish
events from non-event patterns (such as memes) rather than
identifying events of a specific type. Such methods do not
use content of tweets but only features such as temporal
trends of term volume, rely on a large amount of labeled
training data (as opposed to the unsupervised problem we
consider here), and require extensive parameter tuning.

Each of the aforementioned methods only exploits partial
information from social media that is useful for event de-
tection. However, there is very limited work that is able to
model the entire social media graph for event detection, due
to the computational challenge of modeling the complicated
heterogeneous relationships between entities and attributes,
and the risk of overfitting [6]. Our approach, described be-
low, incorporates three types of heterogeneity in the social
media graph, including heterogeneous 1) entity types; 2)
entity attributes; and 3) entity relationships. In addition,
the highly informal, ungrammatical, and dynamic language
used in social media motivates our use of nonparametric
statistical models to provide more accurate detection and
forecasting [18].

To address the above technical challenges, we propose a
Non-Parametric Heterogeneous Graph Scan (NPHGS) ap-
proach for event detection and forecasting using social media
data. We attempt to consider all potentially useful informa-
tion in social media in a unified nonparametric statistical
framework, to facilitate the early detection and accurate
forecasting of societal events. Specifically, we first model
a heterogeneous graph, in which: 1) each node can be of dif-
ferent types, such as user, tweet, geographic location, and
hashtag; 2) the relationships between nodes can be of dif-
ferent types, such as retweet, reply, and follower; and 3)
each node type can have different attributes, such as the
numbers of tweets and users for a given geographic location;
the numbers of followers, tweets, and retweets for a given
user; and the number of terms and the sentiment score for a
given tweet. Second, we further model the network as a “sen-
sor” network, in which each node senses its “neighborhood
environment” and reports an empirical p-value measuring
the current anomalousness levels of various neighborhood-
related attributes. Third, we efficiently maximize a non-
parametric scan statistic over connected subgraphs to iden-
tify the most anomalous network clusters. Each cluster is
returned as the indicator of an ongoing or upcoming event,
and is summarized with information such as type of event,
geographic locations, time, and participants. The main con-
tributions of our study are summarized as follows:

e Formulation of the NPHGS framework. To the
best of our knowledge, this is the first work that mod-
els the whole heterogeneous social media graph as a
“sensor” network, enabling the use of novel, nonpara-
metric graph scan statistics for accurate and scalable
event detection and forecasting.

e Design of two-stage empirical p-value calibra-
tion process. The heterogeneity of different node
types and node attributes, and the correlations be-
tween different attributes of a node, are well addressed
by calibrating all node types and attributes on the
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same scale using the proposed two-stage empirical cal-
ibration process.

e Development of an approximate algorithm for
non-parametric graph scanning. The nonpara-
metric scan statistic over connected subgraphs is ap-
proximately maximized by iterative subgraph expan-
sion and linear time subset scanning, with time com-
plexity O(|V|log|V|), where |V| refers to the total num-
ber of graph nodes.

e Evaluation of theoretical properties: Our pro-
posed approximate algorithm is guaranteed to find the
globally optimal solution if the data contains no “break-
tire” entities (see Subsection 3.3), and is equivalent to
percolation-based graph scan under certain simplifying
assumptions.

e Comprehensive experiments to validate the ef-
fectiveness and efficiency of the proposed tech-
niques. NPHGS was evaluated by extensive experi-
ments on real Twitter datasets. The results demon-
strate that NPHGS outperforms existing representa-
tive techniques for both event detection and forecast-
ing, increasing detection power, forecasting accuracy,
and forecasting lead time while reducing time to de-
tection.

The rest of this paper is organized as follows. Section
2 discusses heterogeneous graph modeling for social me-
dia, and considers Twitter data as a case study. Section
3 proposes nonparametric scan statistics for heterogeneous
graphs. Experiments on real Twitter datasets are presented
in Section 4, and Section 5 describes future work.

2. HETEROGENEOUS GRAPH MODELING

A heterogeneous graph is composed of nodes, attributes,
and relations that could be of multiple different types. The
formal definition of a heterogeneous graph is as follows:

DEFINITION 1 (HETEROGENEOUS GRAPH). A heteroge-
neous graph is defined as a directed graph G = (V, &, f,v),
where ¥V = {V1 U ---UVc}, V. refers to the set of enti-
ties of type ¢, C refers to the total number of entity types,
E CV xV refers to the set of edges, f = {f1...fc} is a
set of C mapping functions, fo : V — RPc defines a D.-
dimensional feature vector (f.(v)) for each node v of type
¢, Y refers to a mapping function such that each e € £ be-
longs to a particular type of relation (e) € {1...Q}, and
Q refers to the number of different relation types.

Throughout the paper, we consider the detection of civil
unrest events and rare disease outbreaks using Twitter data
as a case study. For this application, we assume that a
heterogeneous graph G = (V, &, f,4) has been extracted
from the Twitter data. Additionally, we assume historical
data f.(v®) (for t = 1...T), corresponding to each fea-
ture vector f.(v), which will be used to estimate the anoma-
lousness of the current feature values. Given these data,
we will return the most anomalous connected sub-graphs
maxgcy F(S), where F' is the nonparametric heterogeneous
graph scan statistic defined below. Our goal is to identify
subsets S corresponding to events of interest, as given by
a separate gold standard dataset and as measured by the
performance metrics defined in Section 4.



The selected set of entity types includes User, Location,
Term, Tweet, Link, and Hashtag. The selected entity rela-
tion types and entity attributes are summarized in Figure 1
and Table 1. The sentiment (polarity) score was calculated
using the python sentiment analysis package named “Pat-
tern” [27]. The klout score [28] is an overall measure of
the tweet author’s influence on a scale from 1 to 100. It
is assumed that domain-specific content filtering has been
conducted as a preprocessing step, and the majority of un-
related tweets have been removed. In our study, domain-
specific dictionaries for civil unrest events and hantavirus
outbreaks were obtained from domain experts, and tweets
that match less than three terms in the dictionary were re-
moved. More complicated content filtering techniques can
be applied, such as the training of a SVM classifier [19]. We
note that identical pre-processing steps were applied for all
methods in our experiments below, and we do not expect the
relative performance of methods to be strongly dependent
on this pre-processing.

Co-occurrence

Hashtag

Geographic Neighbors

a

Location

Geographical
Relationship

User Mention

Link

%

Followers

Figure 1: Entity Diagram for Twitter Data Model-
ing

Node Type Features Used

User #tweets, #retweets, F#active-followers,
#active-followees, #mentions,
F#replies

Tweet klout, sentiment, replied-by-graph-
size, reply-graph-size, retweet-graph-
size, retweet-graph-depth

State F#tweets, #active-users

Term F#tweets

Link #tweets

Hashtag F#tweets

Table 1: Twitter Node Attributes

3. NON-PARAMETRIC SCAN STATISTICS
FOR HETEROGENEOUS GRAPHS

This section presents non-parametric scan statistics for
heterogeneous social media graphs. Specifically, Subsec-
tion 3.1 discusses the modeling of the heterogeneous graph
as a “sensor” network by estimating an empirical p-value
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Figure 2: An Example of Twitter Heterogeneous
Network

for each graph node; Subsection 3.2 presents nonparamet-
ric scan statistics; and Subsection 3.3 presents an efficient
approximate algorithm that maximizes the nonparametric
scan statistic over connected subgraphs to identify the most
anomalous graph clusters, which can be regarded as indica-
tors of ongoing or new events.

3.1 Two-Stage Empirical Calibration Process

To deal with the heterogeneity of node attributes for dif-
ferent entity types, we propose to model the heterogeneous
graph as a “sensor” network. Each entity senses its local
“neighborhood” in the graph and reports measurements of
some predefined features. For event detection, it is neces-
sary to estimate a baseline distribution for each attribute
that characterizes its behavior when there is no event occur-
ring. Given these baseline distributions, it is then possible
to estimate an empirical p-value representing the degree of
anomalousness for each node. This empirical p-value can
be regarded as the signal strength of the node’s current
attribute values as an indicator of some ongoing or newly
emerging event.

In order to estimate the baseline distribution of each at-
tribute for each entity, the key component is to collect a
good training sample for distribution estimation. We first
define an appropriate time granularity for event detection
(e.g., hourly, daily, or weekly). We then collect a set of
historical observations for each entity and attribute. We
consider three scenarios:

e Entities with sufficient observations: For Twitter
data, these include locations, regular users, and exist-
ing keywords, hashtags, and links.

e Entities with insufficient observations: For Twit-
ter data, these include new users and newly occurring
keywords, hashtags, and links.

e Entities with single observations: For Twitter data,
the related entities mainly include tweets.

For the first category of entities, it is possible to collect
enough historical records for that specific entity to estimate
its baseline distribution. For example, if a given user, who
has used Twitter for more than a month, tweeted 100 times
today, that value would be compared to her daily numbers



of tweets in historical data. For the second and third cate-
gories, there are not sufficient historical observations avail-
able for each entity. In this situation, we consider all histor-
ical records of the same entity type as the training sample,
calibrated based on time since first occurrence. For example,
if a given tweet is retweeted 50 times on the third day since
its creation, that value would be compared to the numbers
of retweets for all tweets on their third day.

Once the set of historical observations {v®,... v™} is
defined for a given node v, we can then compute the em-
pirical p-values pq(v) for each attribute of node v, and an
overall empirical p-value p(v) for node v, by comparing the
current and historical attribute values. Here we assume one-
tailed p-values, which answer the question: under the null
hypothesis that no events of interest are occurring, what is
the probability that a randomly selected sample would have
an observed value greater than or equal to the current ob-
servation. (The proposed approach can be easily extended
to incorporate two-tailed p-values as well.) For empirical
p-values, we assume that the set of historical observations
represent the null distribution of interest, thus testing the
null hypothesis of exchangeability of past and current obser-
vations. The empirical p-value of a specific feature d for a
node v of type c is defined as:

pa(0) = 13T (Fea@?) > foav)),d=1... D0, (1)

where f. q(v) refers to the d-th component of the feature
vector f.(v). The empirical value pq(v) defined above can
be interpreted as the proportion of historical observations
f(gtc)l(v) when there was no event occurring with observed
values that are greater than or equal to the current observa-
tion fe.q(v). The empirical p-value of node v is then defined
as:

p) = 31 (i, pa0) < i, pa)) . @

1.

The proposed two-stage empirical p-value p(v) has the nice
theoretical property of uniformity as shown in Theorem 1:

THEOREM 1  (UNIFORMITY OF P(V)).
pirical p-value p(v) defined by Equations (1) and (2) follows
a uniform distribution on [0,1] under the assumption that
the current multivariate observations for a single node are
exchangeable with the reference set given the null hypothesis
that no events of interest are occurring.

PrOOF. The assumption of exchangeability of multivari-
ate observations for a single node implies that each feature’s
observations are exchangeable with the reference set, so that
the first-stage p-values are uniform on [0,1]. Moreover, the
features of a node are assumed to have the same correla-
tion structure as the reference set, so the minimum of the
first-stage p-values is exchangeable with the corresponding
minima in the reference set; and thus the second-stage p-
values are uniform on [0,1]. [

The challenge of heterogeneity of different node types and
node attributes is well addressed from the following three
perspectives: First, it deals with network heterogeneity by
calibrating all node types on the same scale, such that all
p-values p(v) are drawn uniformly on [0,1] under the null
hypothesis that no events of interest are occurring. Second,

The two-stage em-

1169

it allows us to consider multiple attributes for a single User,
Tweet, or State node without knowing a priori which ones
will be most indicative of the events of interest. Finally, it
accounts for correlation between the first-stage empirical p-
values p4(v) when computing the overall empirical p-value
p(v).

To better understand the advantages of our proposed two-
stage solution, we briefly compare it to two alternative ap-
proaches. First, we could have simply used a one-stage cal-
ibration process where the feature-level p-values pq(v) are
passed directly into the nonparametric scan statistic de-
scribed below. The nonparametric scan computes the score
F(S) of a subgraph S as a function of the number of p-
values in S which are significant at level a and the total
number of p-values in S. However, we expect the p-values
for the various features of a given node to be highly corre-
lated. As a result, the one-stage calibration process would
be biased toward detecting nodes with more features. For
example, suppose that nodes of type 1 have 100 redundant
(fully correlated) features, while nodes of type 2 have only
a single feature. In this case, a node of type 1 with all 100
p-values equal to .05 would have a much higher score (given
one-stage calibration) than a node of type 2 with p-value
equal to .05. The two-stage calibration correctly accounts
for the correlation structure and would give both nodes the
same score.

A second alternative approach would be to define p(v) as
the minimum p-value ming—1...p, pa(v) without re-calibrating
the significance of p(v) using the historical data. Clearly
this naive approach does not account for multiple hypothesis
testing; it can be readily proved that this estimator does not
follow a uniform distribution under the null and is biased,
tending to underestimate the empirical p-value. For exam-
ple, if 100 p-values for a node were independently drawn
from [0,1], we would expect the minimum p-value to be less
than o = .05 with probability 1 — (1 — 0.05)'°° = 0.994.
Moreover, the naive approach would again be biased toward
giving higher scores to nodes with more features, since the
minimum p-value can only be decreased (made more signifi-
cant) by adding features. Re-calibrating using the historical
data in our two-stage process correctly adjusts for this bias.
Finally, we note that our two-stage process is sufficiently
flexible so that other p-value combination methods (such as
Fisher’s method) could easily have been used in Equation 2
instead of the minimum p-value, while still satisfying Theo-
rem 1.

3.2 Non-Parametric Scan Statistics

As described above, we obtain a “sensor” network H =
(V, €, p) that is the same as the heterogeneous graph G, ex-
cept that the mapping function p : V — [0, 1] now defines
a single empirical p-value corresponding to each node v of
the heterogeneous network. Note that the mapping func-
tion ¥ has been removed: all relation types will be treated
identically in the discussion below.

To determine which connected subgraphs are most anoma-
lous, we generalize the nonparametric scan statistic [17],
which extends Kulldorff’s spatial scan [12] and was orig-
inally proposed for modeling spatial-temporal count data,
to heterogeneous graphs. The nonparametric scan has also
been used for anomalous pattern detection in general cate-
gorical datasets [14], but we note that the present work is the
first work to generalize nonparametric scan statistic to het-



erogeneous graphs, requiring both the novel two-stage cali-
bration procedure described above (to obtain p-values) and
the novel graph scan algorithm described below (to identify
subgraphs with surprisingly high numbers of low, significant
p-values). Ignoring the graph constraints as in [14] leads to
the identification of unconnected subsets consisting of un-
related, individually anomalous nodes from different parts
of the heterogeneous network, resulting in substantially re-
duced detection performance.

The general form of the proposed Non-Parametric Hetero-
geneous Graph Scan (NPHGS) statistic is defined as:

F(S) = max Fu(S)= max ¢(a,Na($).N(S)), (3)

SQ®max

where S C V refers to a connected set of nodes, Nq(S)
Y wes I(p(v) < a) is the number of p-values significant
at level o, and N(S) = )7 .1 is the total number of p-
values in subset S. The significance level a can be opti-
mized between 0 and some constant amaz < 1. The function
@(a, No(S), N(S)) refers to a nonparametric scan statistic,
i.e., a function that compares the observed number of p-
values N, that are significant at level a to the expected
number of significant p-values E[N,(S)] = aN(S), under
the null hypothesis that p-values are uniformly distributed
on [0, 1]. In this work, we explore the use of one nonparamet-
ric scan statistic ¢(a, No(S), N(S)): the Berk-Jones (BJ)
statistic [4]. The BJ statistic is defined as:

Sa) @

where KL is the Kullback-Liebler divergence between the
observed and expected proportions of p-values less than a:
a 1—a

b)+(1—a)log<1_b>.

The BJ statistic can be interpreted as the log-likelihood ra-
tio statistic for testing whether the empirical p-values fol-
low a uniform or piecewise constant distribution. Berk and
Jones [4] demonstrated that this statistic fulfills several op-
timality properties and has greater power than any weighted
Kolmogorov statistic.

It is important to consider a range of o in NPHGS, rather
than a single threshold for significance. For a fixed a such
as a = 0.05, the resulting statistic may lose the power to
detect a small number of highly anomalous p-values (much
smaller than 0.05) or a larger number of subtly anomalous
p-values (slightly greater than 0.05). The selection of max
is in practice slightly greater than typical significance levels
predefined by users; here we use amaq, = 0.15.

We note that the subsets of p-values identified by our al-
gorithm are affected by multiple testing on two dimensions:
we maximize F(S) over subgraphs S and over thresholds
a < amaz- To adjust for multiple testing and correctly mea-
sure the significance of the detected clusters, we could ap-
ply a permutation test, shuffling the temporal component of
the data (assuming the null hypothesis of exchangeability),
identifying the maximum subgraph score for each permuted
sample, and finally comparing the detected cluster score to
the distribution of maximum cluster scores for the permuted
samples to obtain the p-value of the detected cluster.

éB7(a, No(S), N(S)) = N x KL (

KL(a,b) = alog (
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3.3 Efficient Non-Parametric Scanning
Based on the proposed NPHGS statistic, the detection
of the most anomalous connected subgraph from V can be

formalized as the following optimization problem:
max  ¢(a, Na(S), N(S)).

max
SCV:S is connected a<amaqr

()

It can be shown that the time cost of exact solution to the
above optimization problem (5) is exponential in the total
number of graph nodes |V| in the worst case. Therefore, it is
necessary to develop approximate solutions. We first observe
that it is possible to solve a relaxed version of this problem
efficiently by removing the connectivity constraint. Note
that we will use this efficient unconstrained optimization
as a building block to solve the optimization problem with
connectivity constraints. The relaxed problem is formalized
as follows:

max max ¢(a, No(S), N(S5)),

SCV a<amax (6)

which is equivalent to the problem:

gﬂg&\}}( ¢(Q,Na(s),N(S))7

max
a€U(V,amaz)

(7)

where U(S, ®maz) refers to the union of {amaez} and the
set of distinct p-values less than aunqe, in S. Because the
BJ scan statistic satisfies the linear time subset scanning
(LTSS) property [16], the subproblem

max ¢(a, N (5), N(5)) (8)
can be solved in O(|V|) time, assuming that the entities
v € V have already been sorted by priority. Specifically,
the LTSS property guarantees that the only subsets S with
the potential to be optimal are those consisting of the top-n
highest priority nodes {v(1), - ,v(n)}, for some n between
1 and |V|. In this case, a lower (more significant) p-value
corresponds to a higher priority. Therefore, the relaxed ver-
sion (6) of the original problem (5) can be solved in the time
complexity O(|V| x |U(V, &maz)|+|V|log |V]), where the ad-
ditional |V|log|V)| is required to sort the entities by priority.
Based on the computational efficiency of the relaxed prob-
lem, we propose an efficient approximate algorithm by tar-
geted seeding, iterative subgraph expansion, and relaxation.
The proposed algorithm, described in Algorithm 1, will re-
turn a connected subgraph of the heterogeneous graph that
approximately maximizes the proposed non-parametric scan
statistic.

The time complexity of Algorithm 1 is dominated by the
computation of the relaxed problem (6) for the updated sub-
graph SUG in each iteration of graph expansion. This com-
putation must be performed at most KCZ = KC'log|V|
times, each requiring O(|V| x |U(V, Qmaz)|) time assuming
that nodes have already been sorted by priority. Here K
is the number of seed entities considered for each of the
C entity types, and Z is the number of iterative subgraph
expansions performed for each seed entity. Computing the
empirical p-values is O(|V|TlogT), and sorting the nodes
by priority is O(|V|log|V|). Therefore, the total computa-
tional complexity equals O(KC X |U(V, tmaz)| X |V|log |V|+
[V|Tlog T). Furthermore, we note that |U(V, tmaz)| can be
considered a constant, since only at most a1 distinct
p-values less than amez will be generated by the empirical
p-value estimation method described above, and thus the
algorithm scales as O(|V|log |V|). For our civil unrest and



Algorithm 1 Non-Parametric Heterogeneous Graph Scan
Input: G = (V,&, f,)
Output: The most anomalous subgraph S*
Obtain “sensor” network H = (V, €, p) as above;
Set amae = 0.15, K =5, Z =log|V|, and S* = 0;
for (k,c)e[l,--- ,K] x[1,---,C] do
Select seed node vy from V., where v is the kth highest-
priority node of that type;
Set S = {wo};
for z€[1,---,Z] do
Set G={v|Jee S,v¢S8,(v,e)or (ev) €&}
Obtain the highest-scoring subset B C S U G, where
S C B, by solving the relaxed problem (6);
end for
if B—S # () then
Set S = B;
else
Break;
end if
end for

rare disease detection experiments below, we have amazT =
(.15)(215) =~ 32.

In addition to its computational efficiency, our proposed
algorithm also has two nice theoretical properties, as follows:

THEOREM 2
in which we fix a instead of allowing o to vary between 0 and
Omax. Let S* = argmaxs Fo(S) denote the optimal con-
nected subgraph. Assume that K is set sufficiently large to
select some v € S* as a seed entity, and Z is set greater than
the diameter of S*. If S* satisfies the property that there is
no “break-tire” entity v € S* (i.e., a node v with p-value
greater than a and whose deletion will break the connectiv-
ity of S*), then Algorithm 1 is guaranteed to identify the
optimal connected subgraph S*.

ProoF. The BJ scan statistic satisfies three intuitive prop-
erties: 1) monotonically increasing with respect to Na; 2)
monotonically decreasing with respect to N and «; and 3)
convex. Therefore, if S* contains no “break-tire” entities,
we know that two properties hold: a) S* consists entirely of
p-values less than or equal to «, and b) no neighbor of §*
has p-value less than or equal to a. Property a) holds since
any leaf node with p-value greater than « could be deleted
without disconnecting S*, increasing the score. Property
b) holds since any neighbor with p-value less than or equal
to a could be added without disconnecting S*, increasing
the score. Now, when v € S* is selected as a seed entity,
each successive graph expansion will add all and only those
neighbor entities with p-values less than or equal to a. If
Z is greater than the diameter of S*, the iteration contin-
ues until no remaining neighbors have p-values less than or
equal to a, at which point S = S*. Therefore Algorithm
1 is guaranteed to identify the optimal connected subgraph

s O

Note that another popular nonparametric scan statistic,
the Higher Criticism (HC) statistic [7], also satisfies the
above three properties and Theorem 2 still holds. Our pre-
liminary analysis (omitted due to space limitations) demon-
strates that the BJ statistic outperforms the HC statistic for
heterogeneous graphs and hence we focus on the BJ statistic

(OPTIMALITY). Consider the simplified case
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for the remainder of our study. We also show an interesting
connection to the percolation-based scan statistic defined
by Arias-Castro et al. [2], which provides nice asymptotic
decision-theoretical properties.

THEOREM 3  (PERCOLATION-BASED SCAN STATISTIC).
As in Theorem 1, we consider the simplified case with fized
a, and again assume that K and Z are set sufficiently large.
Following (2], let Fo(S) = |S| if all p-values in S are less
than or equal to o, and 0 otherwise. Algorithm 1 is guaran-
teed to find the optimal subgraph S* = arg maxs Fo(S).

PRrROOF. As in Theorem 2, we know that two properties
hold: a) S* consists entirely of p-values less than or equal
to «a, and b) no neighbor of S* has p-value less than or
equal to a. Property a) holds since the inclusion of any
p-value greater than a would reduce F,(S) to zero. Prop-
erty b) holds since any neighbor with p-value less than or
equal to a could be added without disconnecting S*, in-
creasing F(S) by 1. The remainder of our proof proceeds
identically to the proof of Theorem 2; note that we do not
need the additional assumption that no “break-tire” entities
exist, since this follows directly from the definition of the
percolation-based scan statistic F(S). [

Note that we have chosen to use the BJ nonparametric
scan statistic because of its superior detection power, in
comparison with other test statistics such as the percolation-
based scan. Nevertheless, this theorem shows the applica-
bility of our work to percolation-based approaches as well.
The computational cost of maximizing BJ over connected
subgraphs is high, but we have proposed an efficient, approx-
imate algorithm to address this issue. The approximation
quality has also been validated by extensive experiments on
real-world datasets, as described below.

4. EXPERIMENTS

This section evaluates the effectiveness and efficiency of
the proposed NPHGS approach based on comprehensive ex-
periments on four countries’ Twitter data. We considered
the detection and forecasting of civil unrest events such as
protests and strikes, and detection of rare disease (han-
tavirus) outbreaks as two case study scenarios, but the pro-
posed techniques can also be directly applied to other ap-
plications, such as the detection and forecasting of human
rights violations and financial crises.

4.1 Experiment Design

Datasets: We randomly collected ten percent of all the
raw Twitter data from June 1, 2012 to June 30, 2013 across
four countries: Argentina, Chile, Columbia, and Ecuador.
Sampling was conducted at the tweet level, instead of user
level. The civil unrest event labels, called Golden Stan-
dard Report (GSR), were collected and confirmed from the
local newspapers that are accessible from internet. The col-
lected tweet volume, news sources, and number of civil un-
rest events reported for each country are summarized in Ta-
ble 2. An example of a labeled GSR event is: (PROVINCE
“El Loa”, COUNTRY = “Chile”, DATE = “2012-05-18",
TITLE = “A large-scale march was staged by inhabitants of
the northern city of Calama, considered the mining capital of
Chile, who demand the allocation of more resources to cop-
per mining cities”, NEWS-LINK = “http://www.pressenza.c



om/2012/05/march-of-dignity-in-mining-capital-of-chile/”).
For rare disease outbreaks, we considered hantavirus out-
breaks in Chile as a case study, because there was a spread
of hantavirus outbreaks there last year that greatly threat-
ened public safety and stability. The outbreak labels were
reported by Chilean Ministry of Health [26] and local news
reports. Specifically, there were 17 rare Hantavirus disease
outbreaks in more than eight different states from January
1, 2013 to June 30, 2013. We post-processed both the civil
unrest and the disease outbreak data to create binary vari-
ables representing whether or not a GSR event occurred in
each province (state) for each date.

Country # tweets  News sources # events

Argentina 48 million Clarin; La Nacion; 302
Infobae

Chile 25 million La Tercera; Las Ul- 216

timas Noticias; El
Mercurio

Colombia 37 million El Espectador; El 251
Tiempo; El Colom-
biano

Ecuador 12 million El Universo; El 149

Comercio; Hoy

Table 2: Description of civil unrest data by country

Data Preprocessing: After we collected the raw tweets,
several preprocessing steps were conducted for our proposed
approach and all the comparison methods, including:

1) Vocabulary Generation: We first generated a vocab-
ulary of ~1000 terms related to civil unrests and a vocabu-
lary of 25 terms related to hantavirus from domain experts;

2) Content Filtering: Only the raw tweets that match
more than two terms from the vocabulary were preserved;

3) Tweet Geocoding: We implemented a geocoding li-
brary for tweets based on three major rules with priorities.
For each tweet, we first searched for location and landmark
mentions in the tweet text, then for geotags that are avail-
able if the user enabled the geocoding function in his/her
phone, and finally for location information from the user’s
profile. The first location information identified was re-
turned as the geographic location of this tweet.

Comparison Methods: We compared our proposed NPHGS

approach with five existing representative methods, includ-
ing Spatio-Temporal (ST) Burst Detection [13], Graph Par-
tition [24], Earthquake Detection [19], Real-World (RW)

Event Identification [3], and Geographic Topic Modeling [25].

The first method returns an alert for each spatio-temporal
burst that is detected. The second method applies wavelet
analysis to build signals for individual words, and then clus-
ters the signals based on their auto-correlations using mod-
ularity based graph partitioning. Each cluster is returned
as an alert, with the most frequent location in the related
tweets identified as the event location. The third method
classifies tweets based on predefined features, and develops
a probabilistic spatiotemporal model to identify the geo-
graphic center and date of the event. The fourth method
considers the framework of online clustering for event de-
tection, but designs a new similarity function in order to
capture features related to time, topical coherence, and so-
cial interactions. The fifth method detects geographic topics
day by day, each of which is returned as an alert.
Implementations of the first and the fifth methods were
obtained from the authors, the second method was repli-
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cated under the authors’ instructions, and the other two
methods were implemented based on the published papers [3,
19]. We strictly followed the strategies recommended by
the authors in their papers to select features and estimated
the related model parameters. Specifically, the parame-
ters of Earthquake Detection, Graph Partition, and Spatio-
Temporal Burst Detection were trained using cross valida-
tion. The Twitter data from June 2012 to December 2012
were used as training data, data from January 2013 to April
2013 were considered as the test dataset for the detection
and forecasting of civil unrest events, and data from Jan-
uary 1, 2013 to June 30, 2013 were considered as the test
dataset for the detection and forecasting of rare disease out-
breaks. As an unsupervised approach, the geographic topic
model has two major parameters, including the numbers of
geographic regions and topics. These two parameters were
predefined based on our interpretation of the data distribu-
tion. Given the statistics of GSR event labels, the numbers
of cities with high frequencies of civil unrest events in the
four countries are mostly smaller than 20. The two param-
eters were set to 20 and 2, respectively. RW-Event has a
number of parameters, including the number of most fre-
quent cluster terms, the parameters related to the incre-
mental clustering algorithm, and the parameters related to
the classification model used. In our implementation, we
considered linear weighted support vector machine (SVM)
to handle the issue of unbalanced class labels. We used 10-
fold cross validation to identify the best combination of all
the related parameters.

Our NPHGS and Baseline Homogeneous Graph
Scan Methods: Our proposed NPHGS is designed in a
nonparametric statistical framework and the specification
of parameters is hence relatively straightforward. Values of
maz and the number of seed entities K were set to 0.15
and 5, respectively. We observed that performance of our
method is not sensitive to the settings of these two param-
eters. In addition to the above five comparison methods,
we also compared our proposed NPHGS with four different
homogeneous versions of NPHGS, including tweet, location,
keyword, and user level homogeneous networks. In order to
make fair comparisons, for each homogeneous graph, we de-
fined a connection between two entities if they have direct
relationships or if they share some neighbors in the hetero-
geneous graph. For example, two tweets are connected if
they have retweet or reply relationships, or if they are con-
nected to the same geographic location or the same terms.
In each case, we assume that the system alerts when de-
tecting a subgraph with score F'(S) above some threshold,
allowing us to consider the tradeoffs between false positive
rate and the other four performance metrics defined below
by varying the alert threshold.

Performance Metrics: This study focuses on the eval-
uation of both event detection and forecasting for different
methods. The related performance metrics include: 1) false
positive rate (FPR), 2) true positive rate (TPR) for fore-
casting, 3) true positive rate for both detection and fore-
casting, 4) average lead time for forecasting, and 5) average
lag time for detection. For each method, the reported alerts
are structured as tuples of (date, location), where “location”
is defined at the province level.

For each gold standard event, we determine whether the
method: a) Had an alert in that province from 1 to 7 days
before the event (such events are considered to be “success-



Method FPR TPR TPR Lead Time Lag Time Run Time
(FP/Day) (Forecasting) (Forecasting & Detection) (Days) (Days) (Hours)

ST Burst Detection 0.65 0.07 0.42 1.10 4.57 30.1
Graph Partition 0.29 0.03 0.15 0.59 6.13 18.9
Earthquake 0.04 0.06 0.17 0.49 5.95 18.9
RW Event 0.10 0.22 0.25 0.93 5.83 16.3

Geo Topic Modeling 0.09 0.06 0.08 0.01 6.94 9.7
NPHGS (FPR=.05) 0.05 0.15 0.23 0.65 5.65 38.4
NPHGS (FPR=.10) 0.10 0.31 0.38 1.94 4.49 38.4
NPHGS (FPR= .15) 0.15 0.37 0.42 2.28 4.17 38.4
NPHGS (FPR=.20) 0.20 0.39 0.46 2.36 3.98 384

Table 3: Comparison between NPHGS and Existing Methods on the civil unrest datasets

Method FPR TPR TPR Lead Time Lag Time
(FP/Day) (Forecasting) (Forecasting & Detection) (Days) (Days)

ST Burst Detection 0.57 0.25 0.63 1.13 3.81
Graph Partition 0.57 0.06 0.19 0.19 6.10
Earthquake 0.92 0.13 0.19 0.75 5.69
RW Event 0.40 0.19 0.41 0.43 4.91

Geo Topic Modeling 0.43 0.19 0.50 0.62 4.31
NPHGS (FPR=.05) 0.05 0.20 0.78 0.71 2.44
NPHGS (FPR=.10) 0.10 0.22 0.85 0.76 1.90
NPHGS (FPR= .15) 0.15 0.25 0.93 0.80 1.36
NPHGS (FPR=.20) 0.20 0.29 0.94 0.82 1.24

Table 4: Comparison between NPHGS and Existing Methods on the Hantavirus dataset

fully predicted” at the given threshold). In this case, we
record the number of days of lead time for that event based
on the earliest such alert; b) Did not have an alert in that
province from 1 to 7 days before the event, but did have
an alert in that province from 0 to 7 days after the event
(such events are considered to be “successfully detected” at
the given threshold). In this case, we record the number of
days of lag time for that event based on the earliest such
alert; or c¢) Did not have an alert in that province between
7 days before and 7 days after the event (such events are
considered to be “undetected” at the given threshold).

Based on the preceding results, we compute how many
alerts were triggered that were not within the 7-day window
before and after any event (this is the number of "false pos-
itives” at the given threshold). Now, as a function of the
number of false positives (we scale this by time, e.g., “1 FP
per day”), we can determine: 1) Proportion of gold stan-
dard events that were successfully predicted; 2) Proportion
of gold standard events that were successfully predicted or
detected (this is one minus the proportion of undetected gold
standard events); 3) Average lead time for all gold standard
events: higher is better. Note that we average in a “0” lead
time for each event that is not successfully predicted; and
4) Average lag time for all gold standard events: lower is
better. Note that we average in a “0” lag time for each event
that is successfully predicted OR is detected on the event
day, and for undetected events we average in a “7” day lag
time. Finally, we note that the maximum false positive rate
that we consider, 1 FP per day, is non-trivial because we
consider each unique combination of a province and a date
as one binary variable, and thus the number of potential
false positives per day could be up to the total number of
provinces in a given country.
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4.2 Comparison between NPHGS and Exist-
ing Methods

Table 3 presents the comparison between the proposed
NPHGS approach and five competing methods for the task
of forecasting civil unrest events. All measurements were
averaged over the results of the four tested countries. For
NPHGS, we show the performance metrics at various false
positive rates. For comparable false positive rates, NPHGS
achieved much higher forecasting TPR and detection TPR
than all competing methods. The average lead time of NPHGS
was at least one day greater than the other methods, and av-
erage lag time was consistently smaller than the other meth-
ods by 1 to 2 days. Run time of NPHGS was comparable
to other methods but slightly higher because it considers all
node types in the heterogeneous network rather than just
tweets. We note that the true positive rates of all tested
methods were lower than 50%, perhaps because some GSR
events did not produce strong signals in the noisy Twitter
data, or because an alert was only considered “correct” if it
matched both the date and location of a GSR event.

Table 4 presents the comparison results for the task of
detecting hantavirus outbreaks. The results indicate consis-
tent patterns as observed in Table 3. For comparable false
positive rates, NPHGS outperformed the competitive meth-
ods in all the metrics. Specifically, NPHGS achieved 10%
to 30% higher forecasting TPR and detection TPR than all
competing methods. The lead time of NPHGS was ten per-
cent to twenty percent (0.2 to 0.5 days) greater than those
of competitive methods, and the lag time of NPHGS was
50% (1 to 2 days) lower than those of competing methods.
By comparing Table 3 and Table 4, we observe that the true
positive rate of NPHGS for forecasting alone on the Han-
tavirus disease data was 10% lower than that of NPHGS on
the civil unrest data. Consistently, the lead time of NPHGS
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Figure 3: Comparison between heterogeneous and homogeneous graph scans. True positive rates for fore-
casting and detection, forecasting lead time, and detection lag time, all measured as a function of the false

positive rate (from 0 to 1 false positive per day).

on the Hantavirus disease data is 1 day less than that of
NPHGS on the civil unrest data. One potential interpreta-
tion is that civil unrest events tend to have stronger signals
in Twitter data leading up to the event, since inflamed public
sentiments and emotions, as well as advance planning and
organization of strikes and protests, may be visible in the
Twitter data. Nevertheless, our results demonstrate that
we can achieve very early detection of emerging rare disease
outbreaks. Table 4 shows that at a reasonably low false pos-
itive rate of 0.2 FP/day, NPHGS has detection lag time of
only 1.24 days, which is better than the typical 3 to 4 days
lag time using traditional public health surveillance data.

4.3 Comparison between NPHGS and homo-
geneous graph scans
This section compares NPHGS and different versions of
homogeneous graph scan methods on the civil unrest datasets,
with results shown in Figure 3. We applied the same frame-
work of NPHGS to homogeneous networks of different en-
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tity types as the baseline methods. Hence, we label NPHGS
as “Heter” in this case, and label the baseline methods as
“Homo-(entity type)”. The results in Figure 3 clearly demon-
strate that NPHGS consistently outperforms all the homo-
geneous graph scan methods for all performance metrics.
When the false positive rate was low (e.g., between 0 and
0.2 FP per day), NPHGS achieved huge (~30%) absolute
improvements in TPR, provided two days of additional lead
time for forecasting, and detected events two days earlier.

S. CONCLUSIONS

This paper presents a nonparametric approach to the prob-
lem of event detection and forecasting for heterogeneous so-
cial media graphs. The direct statistical modeling of hetero-
geneous relationships between entities and attributes is very
complicated and computationally challenging. Our work
avoids this complicated modeling process by transforming
the heterogeneous graph into a “sensor” network, where we
convert the heterogeneous entities and attributes into empir-



ical p-values (using a novel, two-stage empirical calibration
procedure). We then use a novel graph scan algorithm to
maximize a non-parametric scan statistic over subgraphs,
enabling early detection and advance forecasting of emerg-
ing societal events. In addition to evaluation of the theoret-
ical properties of our method, we perform extensive exper-
iments on real Twitter data. Our empirical results demon-
strate that we can effectively forecast civil unrest events and
achieve very early detection of rare disease outbreaks, out-
performing competing methods by a substantial margin for
both detection (power and timeliness) and forecasting (ac-
curacy and lead time). For future work, we plan to ex-
tend NPHGS to do storytelling and causality analysis, since
NPHGS is able to provide rich information related to on-
going or new events, such as the users, geographical loca-
tions, and key terms involved. In addition, we plan to ex-
tend NPHGS to a Bayesian framework so that rich domain
knowledge can be naturally integrated.
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