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Abstract

Higher-order Markov Random Fields, which can capture
important properties of natural images, have become in-
creasingly important in computer vision. While graph cuts
work well for first-order MRF’s, until recently they have
rarely been effective for higher-order MRF’s. Ishikawa’s
graph cut technique [8, 9] shows great promise for many
higher-order MRF’s. His method transforms an arbitrary
higher-order MRF with binary labels into a first-order one
with the same minima. If all the terms are submodular
the exact solution can be easily found; otherwise, pseudo-
boolean optimization techniques can produce an optimal la-
beling for a subset of the variables. We present a new trans-
formation with better performance than [8, 9], both theo-
retically and experimentally. While [8, 9] transforms each
higher-order term independently, we transform a group of
terms at once. For n binary variables, each of which ap-
pears in terms with k other variables, at worst we produce
n non-submodular terms, while [8, 9] produces O(nk).
We identify a local completeness property that makes our
method perform even better, and show that under certain
assumptions several important vision problems (including
common variants of fusion moves) have this property. Run-
ning on the same field of experts dataset used in [8, 9] we
optimally label significantly more variables (96% versus
80%) and converge more rapidly to a lower energy. Pre-
liminary experiments suggest that some other higher-order
MRF’s used in stereo [20] and segmentation [1] are also
locally complete and would thus benefit from our work.

1. Introduction

Higher-order MRF’s have become increasingly impor-
tant in computer vision, as they can incorporate sophisti-
cated priors such as fields of experts (FoE) [17]. To perform
inference in higher-order MRF’s, however, requires mini-
mizing significantly more complex energy functions than
for standard first-order models. Graph cuts are a popular
method for solving first-order MRF’s, such as the bench-
marks described in [19], but are much more difficult to ap-
ply to higher-order MRF’s. As a result, until recently this

powerful optimization method has only been used for a few
specialized higher-order MRF’s, such as [10, 20].

Ishikawa [8, 9] proposed a general-purpose graph cut
technique for arbitrary higher-order MRF’s that shows great
promise. As an application he considered fields of experts
for denoising, an important higher-order MRF that is typi-
cally solved by belief propagation (BP) [14]. Prior to [8, 9]
there was no graph cut method that could successfully han-
dle such an energy function. Ishikawa’s graph cut method
produced better results than the BP method of [14], and ran
an order of magnitude faster [8, 9].

In this paper we propose an alternative construction to
Ishikawa’s, with improved theoretical and experimental per-
formance. Instead of considering terms in the energy func-
tion one at a time, we consider many terms at once. We re-
view existing methods for solving higher-order MRF’s with
graph cuts in section 2, focusing on methods that directly
compete with our work [4, 8, 9, 12, 16, 18]; the comparison
is summarized in figure 1. We present our new algorithm
in section 3, and analyze its worst case performance in sec-
tion 4. In section 5 we show that for problems with a spe-
cific form of local completeness our method performs even
better. Under certain assumptions we prove that some im-
portant vision problems are locally complete, including the
fields of experts MRF considered by Ishikawa. Experimen-
tal results are given in section 7, along with experimental
evidence that other vision problems [1, 20] are also locally
complete. Some technical details and additional images are
provided in the supplementary material.

2. Related work
2.1. Graph cuts and QPBO

Graph cut methods solve energy minimization problems
by constructing a graph and computing the min cut. The
most popular graph cut methods, such as the expansion
move algorithm of [3], repeatedly solve an optimization
problem over binary variables. Such problems have been
extensively studied in the operations research community,
where they are referred to as pseudoboolean optimization
[6] (see [2] for a more detailed survey).

Minimizing an arbitrary binary energy function is NP-
hard (see e.g. [12]). Certain binary optimization problems
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Substitution §2.3.1 Negative §2.3.2 Positive §2.3.3 Ours (worst case) Ours (local completeness c)
New variables O(nk) t O(td) n+O(td) n+O( 1

c t)
Non-submodular terms O(nk) 0 O(nk) n n

Submodular terms O(nk) td O(td2) O(td2) O( 1
c td)

Figure 1. Resources required to reduce t terms of degrees up to d, for an energy function with n variables each of which occurs with up to
k other variables. For each existing method we also provide the section in this paper where it is described.

can be solved exactly by min cut; these include computing
the optimal expansion move [3] and its generalization to fu-
sion moves [15], as well as a number of other interesting
problems such as [10]. The most important class of op-
timization problems that can be solved exactly with graph
cuts are quadratic functions where every term is submodular
[2, 5, 12]. Such a function can be written as a polynomial
in the binary variables (x1, . . . , xn) ∈ Bn in the form∑

i

αixi +
∑
i,j

αi,jxixj . (1)

This function is submodular just in case αi,j < 0 for ev-
ery i, j. Note that in practice an individual variable xi will
appear in terms with several other variables; our algorithm
will exploit this property to obtain better performance, even
in the worst case.

The most widely used technique for minimizing binary
energy functions with non-submodular terms relies on the
roof duality technique of [7] and the associated graph con-
struction [2]. This method, commonly referred to as QPBO
[11], uses min cut to compute the global minimum for any
submodular energy function and for certain other functions
as well (see [2, 11] for a discussion). Even when QPBO
does not compute the global minimum, it provides a par-
tial optimality guarantee called persistency [7]; QPBO com-
putes a partial assignment which, when applied to an arbi-
trary complete assignment, will never cause the energy to
increase. Such a partial assignment gives the variables it
labels their values in the global minimum. Efficient tech-
niques for computing persistencies, along with generaliza-
tions and implementations were proposed in [2, 11].

2.2. Higher-order MRF’s

Higher-order MRF’s, of course, have a long history in
computer vision. They have recently become more popu-
lar, especially due to models such as fields of experts [17].
Message passing approaches, such as belief propogation or
dual decomposition [14, 13], can be used for higher-order
MRF’s, but their efficiency is a concern. For first-order
MRF’s, the performance of graph cut methods is compet-
itive with message passing, and sometimes exceeds it [19].
This has lead to significant interest in applying graph cuts
to higher-order MRF’s.

QPBO represents the state of the art in graph cuts, but
it is restricted to handling energy functions of the form

given in equation (1), i.e. quadratic functions of binary
variables. Popular move making algorithms such as ex-
pansion moves [3] or fusion moves [15], which are very
successful on first-order MRF’s, generate a series of binary
optimization problems. These moves can also be applied
to higher-order MRF’s, and the resulting binary optimiza-
tion problem involves a multilinear polynomial instead of
a quadratic one. So instead of equation (1) we also have
terms like

∑
i,j,k αi,j,kxixjxk and so on. In summary, the

the main technical challenge with higher-order MRF’s is to
reduce this multilinear polynomial into quadratic form; if
the resulting quadratic is submodular it can be solved ex-
actly, while otherwise QPBO can be used to identify persis-
tencies.

Of course it is preferable to identify moves for higher-
order MRF’s where the binary optimization problem can be
reduced to a submodular quadratic one and thus solved ex-
actly. This approach has proven successful for some cases,
notably the Pn model of [10]. However, this has only been
done for a limited class of higher-order MRF’s. For arbi-
trary higher-order MRF’s the natural approach is reduction
to a quadratic followed by QPBO.

2.3. Reduction techniques

There are a number of methods for reducing an arbi-
trary multilinear polynomial over binary variables into a
quadratic one. Our primary contribution is to introduce a
new such transformation; the performance of the different
methods is summarized in figure 1.

Until fairly recently there was only one general-purpose
reduction, discussed in section 2.3.1, which is widely
viewed as impractical. Another transformation, which only
works for terms with negative coefficients, is described in
section 2.3.2; this transformation was recently used for
stereo reconstruction [20]. Ishikawa’s method, which we
discuss in section 2.3.3, fills the gap by reducing terms
with positive coefficients as well, and thus allows arbitrary
higher-order MRF’s to be handled.

2.3.1 Reduction by substitution

The original reduction was introduced by Rosenberg [16].
To reduce higher-order terms, the reduction eliminates all
occurrences of some product xy by introducing a new vari-
able z, replacing xy by z everywhere it occurs, and then
adding the following penalty terms to the energy function:



Mxy−2Mxz−2Myz+3Mz,whereM is a suitably large
constant (larger than the highest value of the unmodified en-
ergy function). This forces z to take the value of xy in any
optimal solution.

The complexity of the reduction depends on finding pairs
of variables to substitute that eventually reduce all terms. If
each variable is in terms with at most k other variables, this
can be done with O(nk) pairs. Overall, we get O(nk) new
variables, non-submodular terms and submodular quadratic
terms.

Note that the non-submodular terms have large coeffi-
cients. Experimentally it has been reported that QPBO per-
forms very poorly on such energy functions (see, for ex-
ample, [9, §8.3.4], which states that QPBO finds almost no
persistencies). This is consistent with our experience, and
as a practical matter no one in the vision literature appears
to have obtained good results with this method.

2.3.2 Reducing negative-coefficient terms

Kolmogorov and Zabih [12] for d = 3 and Freedman and
Drineas [4] for d ≥ 3 suggested the following transforma-
tion for negative higher degree terms:

−x1 · · ·xd = min
y∈B

y

(d− 1)−
d∑

j=1

xj


If we have t negative-coefficient terms of degree d, this
gives t new variables and td submodular quadratic terms,
but no new non-submodular terms.

Let us note that the above equality remains valid even
if we replace some of the xj variables with their comple-
ments xj = (1 − xj). Rother [18] suggested recently a
transformation equivalent with this observation (see type-II
transformations in [18]) together with a new transformation
(see type-I in [18]). If we have t negative coefficient terms,
the new transformation results in 2t new variables and td
submodular quadratic terms, as well as t non-submodular
terms.

2.3.3 Reducing positive-coefficient terms

Recently Ishikawa [8, 9] suggested the following transfor-
mation for positive monomials: let nd = bd−1

2 c and set
ci,d = 1 if d = i is odd, and ci,d = 2 otherwise. Then,

x1 · · ·xd =

min
u1,··· ,ud

nd∑
i=1

ui

ci,d(− d∑
j=1

xj + 2i
)
− 1

+
∑
i<j

xixj

Since all the non-submodular terms produced are of
products of the original variables (i.e., they don’t involve

new variables), their number isO(n2). Furthermore, if each
variable occurs in terms with at most k other variables, then
the number of non-submodular terms is O(nk). There will
be no cancellation of the submodular terms, since they all
involve new variables which are distinct for each term. With
t positive-coefficient terms of degree d this transformation
gives tbd−1

2 c new variables, tbd−1
2 cd submodular terms,

and O(nk) non-submodular terms.

3. Reducing groups of higher-order terms
Our main results are two theorems, each suited to deal-

ing with positive or negative coefficient terms respectively.
In contrast to earlier methods which reduce term-by-term,
our new method reduces a group of terms all at once. The
terms of a multilinear polynomial form a hypergraph H.
The vertices are the polynomial’s variables, and there is a
hyperedge H = {x1, . . . , xd} with weight αH whenever
the polynomial has a term αHx1 · · ·xd.

The two theorems are both concerned with reducing all
positive or negative terms containing a single variable, or
small set of variables; we will write this common subset
of variables as C. The most important special case of our
reduction is shown in figure 2, where we consider positive
terms containing the single variable C = {x1}.

Theorem 3.1 Consider a setH of terms each of which con-
tains a common subset of variablesC, whose hyperedgesH
have positive weights αH > 0. For any assignment of the
boolean variables x1, . . . , xn,∑

H∈H
αH

∏
j∈H

xj =

min
y∈{0,1}

(∑
H∈H

αH

)
y
∏
j∈C

xj +
∑

H∈H
αHy

∏
j∈H\C

xj . (2)

PROOF: Given any assignment of the variables x1, . . . , xn,
either (case 1) all the variables in C are 1, or (case 2) some
variable in C is 0.

Case 1: The LHS is
∑

H∈H αH

∏
j∈H\C xj and the

RHS is miny(
∑

H∈H αH)y +
∑

H∈H αHy
∏

j∈H\C xj . If
we assign y = 1, then the RHS becomes

∑
H∈H αH , and if

we assign y = 0, then it becomes
∑

H∈H αH

∏
j∈H\C xj .

This quantity is always less than or equal to
∑

H∈H αH , so
the minimum is achieved when y = 0, in which case, the
LHS is equal to the RHS.

Case 2: The product
∏

j∈C xj is 0. Since all the terms on
the LHS share the common subset C, the LHS is 0. Since∏

j∈C xj = 0, the RHS is
∑

H∈H αHy
∏

j∈H\C xj . If we
assign y = 1, then this sum is 0, whereas if we assign y =
0, then it is positive, since each αH is positive. Thus, the
minimum is achieved when y = 1, in which case the RHS
is 0, and hence equal to the LHS.



For every positive term containing the common sub-
set C, equation (2) replaces it with a new term
αHy

∏
j∈H\C xj . Since we are working with multilinear

polynomials, we substitute y = 1− y to split this term into
two: αH

∏
j∈H\C xj and−αHy

∏
j∈H\C xj . This gives us

the following corollary, which summarizes the performance
of our reduction.

Corollary 3.2 When we apply equation (2) to a positive
term, we obtain a positive term of smaller degree, and a
negative term with y replacing the common subset C.

For reducing the negative-coefficient terms all sharing
some common subset, we have a similar theorem.

Theorem 3.3 Consider H and C as above, where now the
coefficients αH are negative for allH . Then for any assign-
ment of the variables x1, . . . , xn∑

H∈H
αH

∏
j∈H

xj =

min
y∈{0,1}

∑
H∈H

−αH

1−
∏
j∈C

xj −
∏

j∈H\C

xj

 y (3)

PROOF: The proof is similar to the proof for Theorem 3.1.
The minimum is achieved when y =

∏
j∈C xj .

A crucial difference between this reduction and theo-
rem 3.1 is that in the positive case, we could let the common
subset C be a single variable. Doing this here removes the
term αH

∏
j∈H xj and replaces it with αHy

∏
j∈H\{1} xj ,

another negative term of the same degree. Trying to apply
this reduction repeatedly will thus never terminate. How-
ever, if C consists of two or more variables, then grouping
all terms containing C and reducing results in smaller de-
gree terms replacing every term that we start with.

3.1. Our method

Equations (2) and (3) can be used for different reduction
strategies. Both depend upon the choice of common vari-
ables C, although as noted above we need |C| > 1 to apply
equation (3). Besides choosing |C|, we can also decide the
order to consider different choices ofC; for example, which
single variable to use to apply equation (2), or which pair of
variables to use to apply equation (3).

We will focus on the simplest case: we let the common
part C be a single variable in the order x1, . . . , xn, and
reducing positive terms containing this variable via equa-
tion (2). Negative terms will be reduced using the method
described in section 2.3.2. More complicated schemes are
also possible, such as picking pairs of variables and reduc-
ing both positive and negative terms containing this pair via
equations (2) and (3).

Figure 2. Our main reduction. At left are all the original positive
terms containing the common variable x1 (so αi > 0). At right
are all the new terms we obtain from equation (2). The positive
terms on top are just the original terms minus x1, and the negative
terms on bottom are the original terms with y replacing x1.

Our method reduces a multilinear polynomial with
higher-order terms, to quadratic form in two steps:
Step 1. Eliminate all positive terms by repeated application
of Theorem 3.1, with the common subset C set to a single
variable x1. Gather all terms containing x1, and replace
them with the RHS of equation (2). If H consists of all
positive terms containing x1, then

∑
H∈H

αH

∏
j∈H

xj = min
y∈{0,1}

(∑
H∈H

αH

)
x1y

+
∑

H∈H
αH

∏
j∈H\{1}

xj

−
∑

H∈H
αHy

∏
j∈H\{1}

xj (4)

The positive terms now form a hypergraph on one fewer
variable, so repeat with x2, . . . , xn until all positive terms
are reduced.
Step 2. All higher-order terms now have negative coeffi-
cients. Reduce them term-by-term using the methods in
section 2.3.2.

Note that equation (4) is simply the special case of equa-
tion (2) for a single variable. This special case, which is
illustrated in figure 2, is the one used for our experiments.

4. Worst case performance
For every application of equation 4, we get a single new

variable and a positive quadratic term. Additionally, for
each term we reduce by this rule, we get a positive term
on the same variables minus x1, and a new negative term
with y replacing x1.

The negative term will never cancel or combine with any
existing term, since it contains the new variable y. How-



ever, it is possible that the positive term αH

∏
j∈H\{1} xj

combines with an existing term. To analyze the worst-case
performance, we will assume that this never happens: com-
bining terms only reduces the final amount of variables and
quadratic terms produced.

If terms produced by equation 4 never combine with ex-
isting terms, then the reduction takes all terms containing
x1, removes the variable x1 from each, and adds single pos-
itive quadratic edge and a negative term with y replacing x1

for each original term.
Thus, each positive term of degree d that we start with

will have a single variable removed every time we apply the
reduction, so to be fully reduced it must go through d − 1
applications of the rule. These reductions produce negative
terms of degrees 2, 3, . . . , d.

Reducing these d − 1 negative terms by section 2.3.2
results in d−1 new variables and 2+3+· · ·+d = (d−1)(d+2)

2
submodular quadratic terms.

Overall, to reduce t positive terms of degree d on n vari-
ables, in the worst case our method requires n + t(d − 1)
new variables, t (d−1)(d+2)

2 submodular terms and at most
n non-submodular terms. Even in the worst case our al-
gorithm’s asymptotic performance is superior to Ishikawa’s
method from [8, 9]. We use twice as many variables and
slightly more submodular terms (specifically, (d−1)(d+2)

2 vs
(d−1)d

2 ). Asymptotically, however, both methods require
O(td) new variables and O(td2) submodular terms. How-
ever, our method produces at most n non-submodular terms,
even in the worst case, compared to O(nk) for [8, 9].

5. Local completeness
While our method is asymptotically superior to [8, 9],

there is reason to believe that it performs particularly well
on some common vision problems such as [17, 20]. For
low-level vision problems an individual variable usually
corresponds to a pixel, and there are generally terms in-
volving the spatially adjacent pixels (for example, to im-
pose a spatial smoothness prior). This suggests that k, the
number of other variables that an individual variable shares
terms with, is at least 4, and thus that we produce an energy
function with 1

4 of the number of non-submodular terms.
Note that the number of non-submodular terms in an en-
ergy function seems to be correlated with their difficulty, as
mentioned by [19].

We have identified a property of certain energy func-
tions that we call local completeness, where our algo-
rithm (but not Ishikawa’s) has improved asymptotic perfor-
mance. Consider an energy function on the binary variables
x1, . . . , xn, written as a multilinear polynomial, and denote
byH the hypergraph of its monomials, as before.

Definition 5.1 We say that the polynomial is locally com-
plete with completeness c (or has local completeness c)

if there is a number c ∈ (0, 1] such that, considering the
larger hypergraph H′ formed by all subsets of edges in H
(that is,H′ =

⋃
H∈H 2H ), we have |H| ≥ c|H′|.

Every polynomial is locally complete for some com-
pleteness c, as we can always choose c = |H|

|H′| . However,
we are interested in classes of problems which remain com-
plete as the problem size grows, so we define that a family
of polynomials is locally complete if there is a fixed c such
that all the polynomials have local completeness c. For ex-
ample, a family P of polynomials arising from a particular
vision problem would be locally complete if we always had
1/2 of all subsets of terms appearing in all instances of P .

5.1. Performance on locally complete problems

Recall the procedure for reducing positive terms, using
equation 4. We would like the extra positive terms we cre-
ate, those with variables in H \ {1}, to combine with ex-
isting terms. If it happens that H \ {1} is already a term
with coefficient βH\{1}, then we add αH to this coefficient,
and do not create a new term. This could either make an
existing positive term more positive, or cause a previously
negative term to become positive, but we will see shortly
that in either case, combining these two terms helps.

This explains the definition of local completeness: the
new positive term αH

∏
j∈H\{1} xj has variables which are

a subset of one of our original terms, so if our energy func-
tion has local completeness c, with our method these new
positive terms will combine with existing terms some frac-
tion c of the time. This results in the following asymptotic
analysis.

Theorem 5.2 If an energy function has local completeness
c, our procedure for reducing positive terms will result in
at most 1

c |H| negative coefficient terms, where H is the hy-
pergraph for the original terms (both positive and negative
terms).

PROOF: By the definition of local completeness |H′| ≤
1
c |H|. For every edge H which occurs in H′ and not H,
as a notational convenience we can write in a new term
with variables from H , and with coefficient 0. All edges
of H′ now occur as terms. Whenever we reduce a term
αH

∏
j∈H xj , the positive term αH

∏
j∈H\{1} xj always

combines with an existing term, since H′ is closed under
subsets.

This cancellation may either make an existing positive
term more positive, or make a previously negative become
positive (or a 0 term positive, etc.): in all cases, applying
equation 4 removes the term αH

∏
j∈H xj , changes the co-

efficient on the term with variables H \ {1}, and adds a
new negative term αHy

∏
j∈H\{1} xj . The total number of

terms remains constant.



Extra variables Non-submodular terms Total terms Percent labeled by QPBO
Ishikawa 224,346 421,897 1,133,811 80.4%

Our method 236,806 (∆ = +6%) 38,343 (∆ = −90%) 677,183 (∆ = −40%) 96.1% (∆ = +20%)

Figure 3. Performance comparison of reductions, on Ishikawa’s benchmarks in [9]. Relative performance of our method is shown as ∆.
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Figure 4. Energy after each fusion move (left), and percentage of pixels labeled by QPBO (right), for the image at top of figure 5. Other
images from [9] give very similar curves.

Therefore, when we have finished reducing all positive
terms, we are left with only negative terms, and we have
exactly as many as we started with, namely |H′| ≤ 1

c |H|.

Note that for a family of polynomials which are locally
complete, and with |H| → ∞, it is straightforward to show
an asymptotic bound of Θ(|H|) negative terms required.

As usual, we can reduce all these negative terms term-
by-term, as in section 2.3.2. If we started with t terms of
up to degree d on n variables, the entire reduction results in
at most n+ 1

c t new variables, 1
c td submodular terms and n

non-submodular terms.
Finally, it is worth noting that local completeness is ac-

tually stronger than strictly necessary to guarantee this per-
formance. If our energy function does not have a good lo-
cal completeness, it still could be the case that we get a
good number of terms combining: note that we don’t ac-
tually need all subsets to appear, just that when we reduce
all terms containing x1, all the terms H \ {1} appear. In
this case, the number of combining terms depends on the
order in which we reduce the variables according to equa-
tion 4. Local completeness gives us the stronger property
that no matter what order we pick variables to reduce with,
we always get a large fraction of terms combining.

6. Locally complete energy functions in vision

We believe that many vision problems produce locally
complete energy functions, and hence our method will work
particularly well on them. In this section we will show that
under some reasonable assumptions an important class of
vision problems will have locally complete energy func-
tions. Specifically, we consider fusion moves [15] under

an FoE prior [17] with random proposals. Ishikawa used
this problem to benchmark his algorithm in [8, 9].

The original (non-binary) energy function can be written
as a sum over cliques C in the image

∑
C fC(xC). When

we compute a fusion move there is an input image I and a
proposed image I ′, and for every pixel there is binary vari-
able that encodes whether that pixel takes its intensity from
I or I ′. There is a binary energy function on these variables
that we wish to solve to compute the optimal fusion move.
In a higher-order MRF the cliques C contain more than 2
pixels, so the binary energy function contains terms with
more than 2 variables.

We can obtain a general theorem about the binary energy
functions corresponding to fusion moves, by moving to a
continuous framework. We embed the original intensities in
R, and extend the clique energies fC to functions on Rd. We
need two assumptions: (1) fC is d − 1 times continuously
differentiable and (2) each of the d different mixed partials

∂d−1f

∂x1···d∂xi···∂xd

(where ∂̂xi means to omit the i-th partial)
take their zeros in a set of measure 0.

Theorem 6.1 Under these two assumptions the set of
proposed-current image pairs (I, I ′) for which the fusion
move binary energy function does not have local complete-
ness 1 has measure 0 as a subset of Rn × Rn.

We defer the proof of this theorem to the supplemental
material, but now provide a brief proof sketch. We write
the fusion move binary energy function in terms of n binary
variables bi. In translating this into a multilinear polynomial
in the bi, each cliqueC can result in terms tS for each subset
S of C. We can show that the energy function is locally
complete, if the coefficient on tS is never (or rarely) zero.



Figure 5. Denoising examples. At left is the noisy input image, with our result in the middle and Ishikawa’s at right. Results are shown
after 30 iterations. More images are included in the supplementary material. To compare energy values with visual results, the images on
the top row have energies 118,014, 26,103 and 38,304 respectively; those on the bottom have energies 118,391, 25,865 and 38,336.

For example, here is how to calculate the coefficient on
the term b1b2 in a clique of size 3. If I1, I2, I3 are the la-
bellings in the current image on C, and I ′1, I

′
2, I
′
3 are the

proposed labellings, then the coefficient on b1b2 is given by

fC(I0, I1, I2)−fC(I ′0, I1, I2)−fC(I0, I ′1, I2)+fC(I ′0, I
′
1, I2)

Since our labels embed into R, the four 3-pixel images men-
tioned in this coefficient actually lie on a rectangle in R3. If
we give each of these points v heights of fC(v), then this
coefficient is 0 if and only if the four points lie on a plane.

In general, we do not expect 4 arbitrary points to lie on a
plane. However, these points depend heavily on fC . In the
full proof, we show that if there is an open ball of images
with zero coefficient on b1b2, then the energy function is
locally flat ( ∂2f

∂x1∂x2
= 0) in a corresponding ball. We also

extend this to larger degree terms, to prove the general case.

Corollary 6.2 The energy functions obtained from fusion
moves with FoE priors and proposals chosen as random im-
ages are locally complete with probability 1.

PROOF: The clique functions fC for the FoE model given
in [17] are infinitely differentiable, and their mixed partials
have their zeros in a set of measure 0. Since the proposed
images are chosen from a continuous distribution over Rn,
events of measure 0 occur with probability 0.

7. Experimental results

Ishikawa [8, 9] recently provided the first practical algo-
rithm for solving arbitrary higher-order MRF’s with graph
cuts, and to our knowledge it is the state of the art. Since our
method is a direct competitor to his method, we focused our
efforts on experimentally comparing our results with his.
Fortunately both his code and data are publicly available,
which greatly simplified the comparison.

As mentioned, Ishikawa’s did his benchmarking on fields
of experts priors for image denoising with fusion moves, us-
ing a dataset of 200 images. We used the same MRF, and as
similar energy functions as possible. His fusion moves al-
ternated between a randomly generated uniform image and



a blurred image, and the energy function has clique size 4.
Since he uses randomly generated proposals it is not possi-
ble to run the exact experiments reported in [8, 9]; however,
we re-ran his code at our institution and obtained very sim-
ilar results to what he published. We do multiple fusion
moves on multiple images, so the effects of randomness are
probably minimal.

The overall performance comparison across all images
and all fusion moves is summarized in figure 3. It is instruc-
tive to compare the experimental data in figure 3 with the
asymptotic analysis in figure 1. Overall, our method does
better in practice than the asymptotic analysis suggests. As
predicted we produce many fewer non-submodular terms,
but we also produce fewer submodular terms (a relative im-
provement of 10%). The improved performance of QPBO
is consistent with the observation of [19] that functions with
more non-submodular terms are harder to optimize.

On the [9] benchmarks our algorithm always computes
a lower energy solution, as shown in figure 4. When run
to convergence on all 200 images we obtain an energy that
is 8% lower, and converge 20% faster. Before convergence
we often do substantially better, especially at the beginning.
For example on the images shown in figure 5, where we
stopped both methods after 30 iterations (about a minute),
we have 33% lower energy. In addition, with our method
QPBO labels substantially more pixels at each iteration.1

Denoising results are shown in figure 5. In the boat im-
age our results appear more accurate in smooth areas like
the water, and the face image (shown magnified at bottom
left) is also noticable smoother. These results are after 30
fusion moves. The images after convergence (shown, along
with more examples, in the supplementary material) appear
fairly similar, though we still obtain lower energy.

We plan to investigate several difficult higher-order
MRF’s. As a first step, we experimentally computed the
local completeness of two early vision problems that are
quite far from denoising, namely stereo [20] (clique size 3)
and segmentation [1] (clique size 4). We analyzed the bi-
nary energy functions produced from 60 iterations of [20].
These energy functions have a very high local complete-
ness; on average the energy functions are c-complete for
c = .98, and their least locally complete energy function
had c = .96. We also discovered that the higher-order seg-
mentation energy function of [1] is completely locally com-
plete (c = 1). These results suggest that our method may
be particularly well suited to a number of important vision
problems.
Acknowledgements: This work was supported by NSF
grant IIS-0803705. We thank Joyce Chen and Josh

1We averaged together two consecutive fusion moves in the graph
shown at right in figure 4. This avoids the distracting sawtooth pattern
visible in [8, 9], due to his alternation between random fusion moves and
blurred fusion moves.
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