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Abstract

With the rise of photo-sharing websites such as Facebook

and Flickr has come dramatic growth in the number of pho-

tographs online. Recent research in object recognition has

used such sites as a source of image data, but the test im-

ages have been selected and labeled by hand, yielding rel-

atively small validation sets. In this paper we study image

classification on a much larger dataset of 30 million im-

ages, including nearly 2 million of which have been labeled

into one of 500 categories. The dataset and categories are

formed automatically from geotagged photos from Flickr, by

looking for peaks in the spatial geotag distribution corre-

sponding to frequently-photographed landmarks. We learn

models for these landmarks with a multiclass support vec-

tor machine, using vector-quantized interest point descrip-

tors as features. We also explore the non-visual informa-

tion available on modern photo-sharing sites, showing that

using textual tags and temporal constraints leads to signif-

icant improvements in classification rate. We find that in

some cases image features alone yield comparable classifi-

cation accuracy to using text tags as well as to the perfor-

mance of human observers.

1. Introduction

The billions of photographs in Internet-scale photo col-

lections offer both exciting opportunities and significant

challenges for computer vision, and for the area of object

recognition in particular. Achieving Internet-scale object

recognition and image classification is currently limited by

the relatively small-scale datasets for which ground truth in-

formation is available. For instance, the widely-used PAS-

CAL VOC 2008 dataset [7] has about 10,000 images and

20 categories, while the LabelMe dataset [13] is of similar

size, with a larger hierarchically-organized label set. Bigger

datasets such as Tiny Images [16] have millions of images

but do not include category labels, whereas other datasets

make use of visual features during image selection which

may bias towards certain methods (e.g., [2, 14]). Recent

work on scaling classification algorithms to Internet-sized

datasets with millions of images (such as [17]) has thus

been limited to evaluating classification performance on rel-

atively small datasets such as LabelMe.

In this paper we consider image classification on much

larger datasets featuring millions of images and hundreds

of categories. First we develop a collection of over 30 mil-

lion photos with ground-truth category labels for nearly 2

million of those images. The ground-truth labeling is done

automatically based on geolocation information that is sep-

arate from the image content and the text tags that we use

for classification. The key observations underlying our ap-

proach is that photos taken very near one another are likely

to be of similar things. Moreover, if many people have taken

photos at a given location, there is a high likelihood that

they are photographing some common area of interest, or

what we call a landmark. Thus we use a mean shift [3]

procedure to find peaks in the spatial distribution of geo-

tagged photos, and then use large peaks to define the cate-

gory labels. The photographs taken at these landmarks are

typically quite diverse (see Figure 1 for some examples),

so that the labeled test datasets are challenging, with sig-

nificant amounts of visual variation and a large fraction of

outliers. In most cases, a landmark does not consist of any

one prominent object; for example, many of the landmarks

are museums, in which the photos are distributed among

hundreds of exhibits. Our landmark classification problem

can thus be thought of as more similar to an object cate-

gory recognition problem than to a specific object recog-

nition problem. In Section 3 we discuss the details of our

dataset collection approach and compare it to some alterna-

tive techniques.

We use multiclass support vector machines [4] to learn

models for various classification tasks on this labeled

dataset of nearly two million images. We use visual features

based on clustering local interest point descriptors [11] into

a visual vocabulary that is used to characterize the descrip-

tors found in each image. We also explore using the textual

tags that Flickr users assign to photos as additional features.

The learning and classification methods and the feature ex-



traction are discussed in more detail in Section 4.

Internet photo collections also include rich sources of re-

lational information that can be helpful for classification.

For instance, social ties have been found to improve face

recognition performance on Facebook [15]. In this paper

we consider the photo stream of a given photographer, us-

ing features from photos taken nearby in time to aid in clas-

sification decisions. In particular we use the structured sup-

port vector machine [18] to predict the sequence of category

labels for a photo stream rather than classifying a single

photo at a time. Feature extraction, learning, and classifica-

tion methods using temporal context are discussed further

in Section 5.

In Section 6 we present a set of large-scale classification

experiments involving between 10 and 500 categories and

tens to hundreds of thousands of photos (in contrast to other

recent image recognition work which use large datasets but

small test subsets). We find that the combination of im-

age and text features performs better than either alone, even

when we remove untagged photos from the dataset. We

also describe a small study of human performance on land-

mark classification which suggests that a multiclass SVM

using both image and text features performs nearly as well

as people can. Finally we show that using temporal con-

text from photos taken by the same photographer nearby in

time yields a striking improvement compared to using vi-

sual features alone — around 10 percentage points in most

cases. On the other hand, the improvement using the textual

tags from those same nearby photos is small.

Thus we find that bag-of-word models using structured

SVM classifiers with vector-quantized SIFT features can

in many cases yield classification results nearly as good

as or better than those obtained using text features, while

also performing nearly as well as humans. Moreover the

running time is dominated by the feature extraction, with

classification taking just a few milliseconds per photo even

for hundreds of categories. These experiments demonstrate

the power of large labeled datasets, even when a substan-

tial fraction of the training images is mislabeled, suggest-

ing that for certain kinds of problems visual matching of

Internet-scale datasets could be quite feasible with today’s

techniques.

2. Related Work

Image classification using bag-of-features models has

been studied extensively (see [6] or [20] for recent surveys),

however such previous work has been carried out only at

much smaller scales. The work we report here uses two or-

ders of magnitude more labeled photos – nearly two million

photos as opposed to a few thousand in previous work – and

one to two orders of magnitude more categories – up to 500

compared to tens in most previous work. This larger scale

allows us to study how performance is affected by the num-

ber of categories and the number of training images avail-

able. Our investigation also evaluates text tags versus image

features, and considers the use of temporal context which

has not received much attention in the literature.

Some recent work has used large datasets, but the num-

ber of labeled photos available for evaluating performance

has usually been quite small. For instance [12] uses one

million photos but only 5,000 of them have ground truth la-

bels. The recent work of [17] considers a dataset with tens

of millions of images, but only at thumbnail resolutions and

again without labels for assessing classification accuracy.

Another line of research uses small training sets to auto-

matically label larger image sets (e.g., [2, 14, 21]), however

such approaches generally make use of image features and

machine learning techniques, and thus the resulting datasets

are not independent of the kinds of features and methods

that one wants to test. This raises the possibility that meth-

ods related to the ones used to create the dataset might be at

an unfair advantage.

We also investigate how the visual vocabulary size af-

fects classification performance. Although [19] presents a

technique for finding the optimal visual vocabulary size for

their task, it is not clear that their method can scale to large

datasets because the running time is linear in the number of

images and quadratic in the number of categories.

The paper of [8] is related to our work in that it stud-

ies geolocating photographs, but their goal is quite different

from ours, as we do not try to predict location but rather

just use location to derive category labels. (For instance,

in our problem formulation a misclassification with a geo-

graphically proximate category is just as bad as with one

that is far away.) Our experiments use a standard classifi-

cation paradigm and thus are comparable with many other

studies. Moreover, the test set in [8] contains only 237 im-

ages that were partially selected by hand, making it diffi-

cult to generalize the results beyond that set. In contrast

we use automatically-generated test sets that contain tens or

hundreds of thousands of photos, providing highly reliable

estimates of performance accuracy.

Some very recent papers have considered landmark clas-

sification tasks similar to the one we study here, but again

have done so at a much smaller scale. For example, [10]

studies how to build a model of a landmark by extract-

ing a small set of iconic views from a large set of pho-

tographs. The paper tests on just three hand-chosen cate-

gories, making it unclear how well the method would scale

to more realistic classification tasks. The very recent work

of [21] is similar to our approach in that it finds highly-

photographed landmarks automatically from a large collec-

tion of geotagged photos. However the test set they use is

hand-selected and very small — 728 total images for a 124-

category problem, or fewer than 6 test images per category

— and their approach is based on nearest-neighbor search,



which is unlikely to scale to the millions of test images we

consider here. Our recent paper on organizing large photo

collections [5] uses a dataset of geotagged photos similar to

the one we describe here, however the focus of that work

is on geographic embedding and organization of photos in-

stead of image classification.

3. Building Internet-Scale Datasets

Our long-term goal is to create large publicly-available,

labeled datasets that are representative of photos found

on photo-sharing sites on the web. In constructing such

datasets, it is critical to avoid potential biases either in se-

lecting the images to include in the dataset or in assign-

ing ground-truth labels. For instance, methods based on

searching for photos tagged with hand-selected keywords

(e.g., [8, 12]) are prone to bias because one might inadver-

tently choose keywords corresponding to objects that are

amenable to a particular image classification algorithm. A

number of previous collection efforts also use unspecified

criteria to discard certain photos from the dataset, again in-

troducing the potential for bias towards a particular algo-

rithm. Also problematic is using the same kinds of features

to produce ground-truth labels as are used by the classifi-

cation algorithm (e.g., as in [2, 14, 21]). We thus advocate

automatic techniques for creating datasets based on features

that are independent from those used by the algorithms be-

ing tested. In our case, we avoid using textual tags or visual

features to label or select images, instead using a completely

separate source of information: geotags.

Our dataset was formed by using the Flickr API to re-

trieve metadata for over 60 million publicly-accessible geo-

tagged photos. We eliminate photos for which the precision

of the geotags (as reported in Flickr metadata) is worse than

about a city block. For each of the remaining 30 million

photos we consider the latitude-longitude coordinates as a

point in the plane, and then perform a mean shift clustering

procedure [3] on the resulting set of points to identify local

peaks in the photo density distribution, as in [5]. The radius

of the disc used in mean shift is about 100m. Since our goal

is to identify locations where many different people took

pictures, we count at most 5 photos from any given Flickr

user towards any given peak. We currently use the top 500

such peaks as categories; the number of photos becomes

small for lower-ranked categories (e.g. the 500th largest

peak has 585 photos whereas the 1000th largest peak has

284 photos). Figure 1 illustrates the top 10 categories in our

dataset, corresponding to the ten most photographed land-

marks.

We downloaded the image data for all 1.9 million pho-

tos known to our crawler that were geotagged within one

of these 500 landmarks. For the experiments on classify-

ing temporal photo streams, we also downloaded all images

taken within 48 hours of any photo taken in a landmark,

bringing the total number of images to about 6.5 million.

The images were downloaded at Flickr’s medium resolu-

tion level, which is about 1/4-megapixel. The total size of

the dataset is just over one terabyte.

4. Single Image Classification

To perform image classification we adopt the bag-of-

features model of [6]. As in that paper, we build a visual

vocabulary by clustering SIFT descriptors from photos in

the training set using the k-means algorithm. To make k-

means clustering tractable on this quantity of data we use

the approximate nearest neighbor (ANN) technique of [1]

to efficiently assign points to cluster centers. The advantage

of this technique is that it guarantees an upper bound on

the approximation error, unlike other techniques that have

recently been used for clustering such as randomized k-d

trees [12]. In our implementation we set the bound such

that the cluster center found by ANN is no further away

than 110% of the distance between the point and the opti-

mal cluster center.

Once a visual vocabulary of size k has been generated,

a k-dimensional feature vector is constructed for each im-

age by using SIFT to find local interest points and assigning

each interest point to the visual word with the closest de-

scriptor. We then form a frequency vector which counts the

number of occurrences of each visual word in the image.

For textual features we use a similar vector space model in

which any tag used by at least three different users is a di-

mension in the feature space, so that the feature vector for

a photo is a binary vector indicating presence or absence of

each text tag. Both types of feature vectors are normalized

to have L2-norm of 1. We also study combinations of im-

age and textual features, in which case the image and text

feature vectors are simply concatenated.

We learn a linear model that scores a given photo for

each category and assigns it to the class with the highest

score. More formally, let m be the number of classes and x

be the feature vector of a photo. Then the predicted label is

ŷ = argmax
y∈{1,··· ,m}

s(x, y;w), (1)

where w = (wT
1 , · · · ,w

T
m)T is the model and s(x, y;w) =

〈wy,x〉 is the score for class y under the model. Note that

in our settings, the photo is always assumed to belong to

one of the m categories. Since this is by nature a multi-

way (as opposed to binary) classification problem, we uti-

lize the multiclass SVM [4] to learn the model w, using the

SVMmulticlass software package [9]. For a set of training ex-

amples {(x1, y1), · · · , (xN , yN )} the multiclass SVM opti-



Landmark

(most distinctive tag) Random tags Random images

1. eiffeltower

eiffel
city
travel
night
street

2. trafalgarsquare

london
summer
july
trafalgar
londra

3. bigben

westminster
london
ben
night
unitedkingdom

4. londoneye

stone
cross
london
day2
building

5. notredame

2000
portrait
iglesia
france
notredamecathedral

6. tatemodern

england
greatbritian
thames
streetart
vacation

7. empirestatebuilding

manhattan
newyork
travel
scanned
evening

8. venice

tourists
slide
venecia
vacation
carnival

9. colosseum

roma
england
stadium
building
italy

10. louvre

places
muséedulouvre
eau
paris
canon

Figure 1. The world’s most photographed landmarks, and the first 10 categories of our dataset. We show the highest-frequency tag relative

to the background distribution, 5 random tags, and 5 random images. The landmark tagged “venice” is Piazza San Marco.

mizes the objective function

min
w,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi (2)

s.t. ∀i, y 6= yi : 〈wyi
,xi〉 − 〈wy,xi〉 ≥ 1 − ξi

where C is the trade-off between training performance and

margin in SVM formulations.1 Hence for each training ex-

ample, the learned model is encouraged to give higher score

1For all our experiments, we simply set C to 1/x̄2 where x̄ is the aver-

age L2-norm of the training feature vectors.



to the correct class label than to the incorrect ones. In fact,

by simply rearranging terms it can be shown that the objec-

tive function is an upper bound on the training error.

In contrast, many previous approaches to object recog-

nition using bag-of-parts models (such as [6]) train a set of

binary SVMs (one for each category) and classify an im-

age by comparing scores from the individual SVMs. Such

approaches are problematic for n-way forced-choice prob-

lems, however, because the scores produced by a collection

of independently-trained binary SVMs may not be compa-

rable, and thus such approaches lack any performance guar-

antee. It is possible to alleviate this problem by using a dif-

ferent C value for each binary SVM (as is done in [6]), but

this introduces additional parameters that need to be tuned,

either manually or via a process such as cross validation.

Note that while the categories in this single-photo classi-

fication problem correspond to geographic locations, there

is no geographical information used in the learning or clas-

sification. For example, unlike [8] we are not concerned

with pinpointing a photo on a map, but rather with classify-

ing images into discrete categories.

5. Temporal Information

Modern photo-sharing sites collect a rich set of metadata

which is potentially useful for image classification tasks.

For example, photos taken by the same photographer at

nearly the same time are quite likely to be related. In the

specific case of classifying landmarks, practical and phys-

ical constraints on human movement mean that certain se-

quences of category labels are much more likely than others.

To learn the patterns created by such constraints, we view

temporal sequences of photos taken by the same user as a

single entity and label them jointly as a structured output.

5.1. Temporal Model for Joint Classification

We model a temporal sequence of photos as a graphi-

cal model with a chain topology, where the nodes repre-

sent photos and edges connect nodes that are consecutive in

time. The set of possible labels for each node is simply the

set of m landmarks, indexed from 1 to m. The task is to la-

bel the entire sequence of photos with category labels, how-

ever we score correctness only for a single selected photo in

the middle of the sequence, with the remaining photos serv-

ing as temporal context for that photo. Denote an input se-

quence of length n as X = ((x1, t1), · · · , (xn, tn)), where

xv is a feature vector for node v (encoding evidence about

the photo such as textual tags or visual information) and tv
is the corresponding timestamp. Let Y = (y1, · · · , yn) be a

labeling of the sequence. We would like to express the scor-

ing function S(X,Y ;w) as the inner product of some fea-

ture map Ψ(X,Y ) and the model parameters w, so that the

model can be learned efficiently using the structured SVM.

Node Features To this end, we define the feature map for

a single node v under the labeling as,

ΨV (xv , yv) = (I(yv = 1)xT , · · · , I(yv = m)xT )T , (3)

where I(·) is an indicator function. Let wV =
(wT

1 , · · · ,w
T
m) be the corresponding model parameters

with wy being the weight vector for class y. Then the

node score sV (xv, yv;wV ) is the inner product of the

ΨV (xv, yv) and wV ,

sV (xv, yv;wV ) = 〈wV ,ΨV (xv, yv)〉 . (4)

Edge Features The feature map for an edge (u, v) un-

der labeling Y is defined in terms of the labels yu and yv,

the time elapsed between the two photos δt = |tu − tv|,
and the speed required to travel from landmark yu to land-

mark yv within that amount of time, speed(δt, yu, yv) =
distance(yu, yv)/δt. Since the strength of the relation

between two photos decreases with the elapsed time be-

tween them, we divide the full range of δt into M intervals

Ω1, · · · ,ΩM . For δt in interval Ωτ , we define feature vector

ψτ (δt, yu, yv) = (I(yu = yv), I(speed(δt, yu, yv) > λτ ))T ,
(5)

where λτ is a speed threshold. This feature vector encodes

whether the two consecutive photos are assigned the same

label and, if not, whether the transition requires a person

to travel at an unreasonably high speed (i.e. greater than

λτ ). The exact choices of the time intervals and the speed

thresholds are not crucial, so long as they are sensible. We

also take into consideration the fact that some photos have

invalid timestamps (e.g. a date in the 22nd century) and

define the feature vector for edges involving such photos as,

ψ0(tu, tv, yu, yv) = I(yu = yv)(I(z = 1), I(z = 2))T ,
(6)

where z is 1 if exactly one of tu and tv is invalid and 2 if

both are. Here we no longer consider the speed, since it

is not meaningful due to invalid timestamps. The complete

feature map for an edge is thus,

ΨE(tu, tv, yu, yv) = (I(δt ∈ Ω1)ψ1(δt, yu, yv)
T , · · · ,

I(δt ∈ ΩM )ψM (δt, yu, yv)
T ,

ψ0(tu, tv, yu, yv)
T )T (7)

and the edge score is,

sE(tu, tv, yu, yv;wE) = 〈wE ,ΨE(tu, tv, yu, yv)〉 , (8)

where wE is the vector of edge parameters.

Overall Feature Map The total score of input sequence

X under labeling Y and model w = (wT
V ,w

T
E)T is simply



the sum of individual scores over all the nodes and edges.

Therefore, by defining the overall feature map as,

Ψ(X,Y ) = (

n∑

v=1

ΨV (xv, yv)
T ,

n−1∑

v=1

ΨE(tv, tv+1, yv, yv+1)
T )T ,

the total score becomes an inner product with w,

S(X,Y ;w) = 〈w,Ψ(X,Y )〉 . (9)

The predicted labeling for sequence X by model w is one

that maximizes the score,

Ŷ = argmax
Y ∈YX

S(X,Y ;w), (10)

where YX = {1, · · · ,m}n is the the label space for se-

quence X of length n. This can be obtained efficiently us-

ing Viterbi decoding because the graph is acyclic.

5.2. Parameter Learning

The model parameters are learned using structured

SVMs [18]. Let ((X1, Y1), · · · , (XN , YN )) be the training

examples. The structured SVM optimizes for parameters w

by minimizing a quadratic objective function subject to a

set of linear soft margin constraints,

min
w,ξ

1

2
‖w‖

2
+ C

N∑

i=1

ξi (11)

s.t. ∀i, Y ∈ YXi
: 〈w, δΨi(Y )〉 ≥ ∆(Yi, Y ) − ξi,

where δΨi(Y ) denotes Ψ(Xi, Yi) − Ψ(Xi, Y ) (thus

〈w, δΨi(Y )〉 = S(Xi, Yi;w) − S(Xi, Y ;w)) and the loss

function ∆(Yi, Y ) in this case is simply the number of mis-

labeled nodes (photos) in the sequence. It is easy to see that

the structured SVM degenerates into a multiclass SVM if

every example has only a single node.

The difficulty of this formulation is that the label space

YXi
grows exponentially with the length of the sequence

Xi. Structured SVMs address this problem by iteratively

minimizing the objective function using a cutting-plane al-

gorithm, which requires finding the most violated constraint

for every training exemplar at each iteration. Since the loss

function ∆(Yi, Y ) decomposes into a sum over individual

nodes, the most violated constraint,

Ŷi = arg max
Y ∈YXi

S(Xi, Y ;w) + ∆(Yi, Y ), (12)

can be obtained efficiently via Viterbi decoding in the same

manner as making a prediction using the model.

6. Experiments

Figure 2 presents results for various classification exper-

iments on our dataset of nearly 2 million images. For each

of these experiments we evenly divided the dataset into test

and training image sets that are disjoint by photographer,

so that duplicate photos taken by the same user could not

appear during both training and testing. To make classifi-

cation results easier to interpret across different categories

with differing numbers of images, we constructed the test

and training datasets by sampling the same number of im-

ages from each category. In practice this means that the

number of images used in an m-way classification experi-

ment is equal to m times the number of photos in the least

popular of the m landmarks, and the baseline probability of

a correct random guess is 1/m.

We see from Figure 2 that in classifying single images

(as described in Section 4), the visual features are less ac-

curate than textual tags but nevertheless significantly better

than random baseline — four to six times higher for the 10

category problems and nearly 50 times better for the 500-

way classification. The combination of textual tags and vi-

sual tags performs significantly higher than either alone, in-

creasing performance by about 10 percentage points in most

cases. This performance improvement is partially because

about 15% of photos in the dataset do not have any textual

tags. However even when such photos are excluded from

the evaluation, adding visual features still gives a signifi-

cant improvement over using text tags alone, increasing ac-

curacy from 79.2% to 85.47% in the top-10 category case,

for example.

The figure also shows a dramatic improvement in visual

classification performance when photo streams are classi-

fied jointly using a structured SVM (as described in Sec-

tion 5) — nearly 12 percentage points for the top-10 cat-

egory problem, for example. In contrast, the temporal in-

formation provides little improvement for the textual tags,

suggesting that tags from contemporaneous images contain

largely redundant information. In fact, the classification

performance using temporal and visual features is actually

slightly higher than using temporal and textual features for

the top-20 and top-50 classification problems. For all of the

experiments, the best performance is achieved using the full

combination of visual, textual and temporal features, which

gives for example 82.54% correct classification for the 10-

way problem and 45.34% for the 500-way problem — more

than 220 times better than the baseline! For these experi-

ments, the maximum length of a photo stream was limited

to 11, or five photos before and after a photo of interest.

Figure 2 shows classification experiments for different

numbers of categories and also for categories of different

rank. For the textual features, problems involving higher-

ranked categories are more difficult; for example, the per-

formance on classifying landmarks ranked 1 through 10



Single images Photo streams

Categories Baseline visual textual combined visual textual combined

Top 10 landmarks 10.00 57.55 69.25 80.91 68.82 70.67 82.54

Landmarks 200-209 10.00 51.39 79.47 86.53 60.83 79.49 87.60

Landmarks 400-409 10.00 41.97 78.37 82.78 50.28 78.68 82.83

Top 20 landmarks 5.00 48.51 57.36 70.47 62.22 58.84 72.91

Landmarks 200-219 5.00 40.48 71.13 78.34 52.59 72.10 79.59

Landmarks 400-419 5.00 29.43 71.56 75.71 38.73 72.70 75.87

Top 50 landmarks 2.00 39.71 52.65 64.82 54.34 53.77 65.60

Landmarks 200-249 2.00 27.45 65.62 72.63 37.22 67.26 74.09

Landmarks 400-449 2.00 21.70 64.91 69.77 29.65 66.90 71.62

Top 100 landmarks 1.00 29.35 50.44 61.41 41.28 51.32 62.93

Top 200 landmarks 0.50 18.48 47.02 55.12 25.81 47.73 55.67

Top 500 landmarks 0.20 9.55 40.58 45.13 13.87 41.02 45.34 0 100 200 300 400 500
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Figure 2. Percentage of images correctly classified for varying numbers of categories and combinations of features.

is about 10 percentage points worse than for landmarks

200 through 209. This is because the top landmarks are

mostly located in a small set of cities including Paris, Lon-

don, and New York, so that textual tags like “london” are

relatively uninformative. On the other hand, classification

using visual cues is significantly better for higher-ranked

landmarks, probably because higher-ranked categories have

more training images (e.g., 1,829 per category for the top

20 categories vs. 542 per category for 400-419).

A substantial number of Flickr photos are mislabeled or

inherently ambiguous — a close-up photo of a dog or a side-

walk could have been taken at almost any landmark. To try

to gauge the frequency of such difficult images, we con-

ducted a small-scale human subject study. We asked 20

well-traveled people to each label 50 photos taken at the

world’s top ten landmarks. Textual tags were also shown

for a random subset of the photos. We found that the aver-

age human classification accuracy was 68.0% without tex-

tual tags and 76.4% when both the image and tags were

shown (with standard deviations of 11.61 and 11.91, re-

spectively). Thus the humans performed better than the au-

tomatic classifier when using visual features alone (68.0%
versus 57.55%) but about the same when both text and vi-

sual features were available (76.4% versus 80.91%).

For most of the experiments shown in Figure 2, the vi-

sual vocabulary size was set to 20,000. This size was com-

putationally prohibitive for our (single-threaded) structured

SVM learning code for the 200- and 500-class problems,

so for those tasks we instead used 10,000 and 5,000, re-

spectively. An interesting question is how the vocabulary

size impacts classification performance on large-scale im-

age sets. To study this we repeated a subset of the exper-

iments for several different vocabulary sizes. As Table 1

shows, classification performance improves as the vocab-

ulary size increases, but the relative effect is more pro-

nounced as the number of categories increases. For ex-

ample, when the vocabulary size is increased from 1,000

# of Single images

categories 1,000 2,000 5,000 10,000 20,000

10 47.51 50.78 52.81 55.32 57.55

20 39.88 41.65 45.02 46.22 48.51

50 29.19 32.58 36.01 38.24 39.71

100 19.77 24.05 27.53 29.35 30.42

Table 1. Visual classification rates for different vocabulary sizes.

to 20,000, the relative performance of the 10-way classifier

improves by about 20% (10.05 percentage points, or about

one baseline) while the accuracy of the 100-way classifier

increases by more than 50% (10.65 percentage points, or

nearly 11 times the baseline). We found that performance

on the 10-way problem asymptotes by about 80,000 clusters

at about 59.3%. Unfortunately we could not try such large

numbers of clusters for the other tasks because the learn-

ing becomes intractable; studying how to efficiently learn

structured SVMs with such large feature vectors would be

an interesting area for future work.

In the experiments presented so far we sampled from the

test and training sets to produce equal numbers of photos for

each category, in order to make the empirical results easier

to interpret. However our approach and results do not de-

pend on this property of the experimental setup; when we

sample from the actual photo distribution our techniques

still perform dramatically better than the baseline (which

is to guess the most frequent category). For example, in

the top-10 category classification problem using the actual

photo distribution we achieve 53.58% accuracy with visual

features and 79.40% when tags are also used, versus a base-

line of 14.86%; the 20-way classifier produces 44.78% and

69.28% respectively, versus a baseline of 8.72%.

The experimental results we report here are highly pre-

cise because of the large size of our test dataset. Even the

smallest of the experiments, the top-10 classification, in-

volves about 35,000 test images. To give a sense of the



variation across runs due to differences in sampling, we ran

10 trials of the top-10 classification task with different sam-

ples of photos and found the standard deviation to be about

0.15 percentage points. Due to computational constraints

we did not run multiple trials for the experiments with large

numbers of categories, but the variation is likely even less

due to the larger numbers of images involved.

Image classification on a single 2.66 GHz processor

takes about 2.4 seconds, most of which is consumed by

SIFT interest point detection. Once the SIFT features are

extracted, classification requires only approximately 3.06

ms for 200 categories and 0.15 ms for 20 categories. SVM

training times varied by the number of categories and the

number of features, ranging from less than a minute on the

10-way problems to about 72 hours for the 500-way struc-

tured SVM on a single CPU. We conducted our experiments

on a small cluster of 60 nodes running the Hadoop open

source map-reduce framework.

7. Summary

We have presented a means of creating large labeled im-

age datasets from geotagged image collections, and experi-

mented with a set of over 30 million images of which nearly

2 million are labeled. Our experiments demonstrate that

multiclass SVM classifiers using SIFT-based bag-of-word

features achieve quite good classification rates for large-

scale problems, with accuracy that in some cases is com-

parable to that of humans on the same task. We also show

that using a structured SVM to classify the stream of photos

taken by a photographer, rather than classifying individual

photos, yields dramatic improvement in the classification

rate. Such temporal context is just one kind of potential con-

textual information provided by photo sharing sites. When

these image-based classification results are combined with

text features from tagging, the accuracy can be hundreds of

times the random guessing baseline. Together these results

demonstrate the power of large labeled datasets and the po-

tential for classification of Internet-scale image collections.
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