
Type-based Taint Analysis for Java Web
Applications

Wei Huang, Yao Dong, and Ana Milanova

Rensselaer Polytechnic Institute

Abstract. Static taint analysis detects information flow vulnerabilities.
It has gained considerable importance in the last decade, with the majority
of work focusing on dataflow and points-to-based approaches.
In this paper, we advocate type-based taint analysis. We present SFlow, a
context-sensitive type system for secure information flow, and SFlowInfer,
a corresponding worst-case cubic inference analysis. Our approach effec-
tively handles reflection, libraries and frameworks, features notoriously
difficult for dataflow and points-to-based taint analysis.
We implemented SFlow and SFlowInfer. Empirical results on 13 real-
world Java web applications show that our approach is scalable and also
precise, achieving false positive rate of 15%.

1 Introduction

Information flow vulnerabilities are one of the most common security problems
according to OWASP [14]. A common information flow vulnerability is SQL
injection, shown in the example in Fig. 1 (adapted from [9]).

1 HttpServletRequest request = ...;
2 Statement stat = ...;
3 String user = request.getParameter(‘‘user’’);
4 StringBuffer sb = ...;
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 String query = sb.toString();
8 stat.executeQuery(query);

Fig. 1. SQL Injection Example.

In this example, the user parameter of the HTTP request is obtained through
request.getParameter(“user”) and stored in variable user, which is later appended to
an SQL query string and sent to a database for execution: stat.executeQuery(query).
At a first glance, this code snippet is unremarkable. However, if a malicious
end-user supplies the user parameter with the value of “John OR 1 = 1”, the
unauthorized end-user can gain access to the information of all other users,
because the WHERE clause always evaluates to true. Other information flow
vulnerabilities include cross-site scripting (XXS), HTTP response splitting, path
traversal and command injection [9].

2 Huang et al.

Static taint analysis detects information flow vulnerabilities. It automatically
detects flow from untrusted sources to security-sensitive sinks. In the example
in Fig. 1, the return value of HttpServletRequest.getParameter() is a source, and
the parameter p of Statement.executeQuery(String p) is a sink.

Research on static taint analysis for Java web applications has largely focused
on dataflow and points-to-based approaches [5, 9, 18–20]. One issue with these
approaches is that they usually rely on context-sensitive points-to analysis, which
is expensive and non-modular (i.e., it requires a whole program). Arguably the
toughest issue is dealing with reflection, libraries (JDK and third-party), and
frameworks (Struts, Spring, Hibernate, etc.), features notoriously difficult for
dataflow and points-to analysis and yet ubiquitous in Java web applications.

In this paper, we advocate type-based taint analysis. Specifically, we present
SFlow, a context-sensitive type system for secure information flow, and SFlowInfer,
a corresponding worst-case cubic inference analysis. We leverage the inference
and checking framework we built in previous work [6], which we have used to
infer and check object ownership [6] and reference immutability [8].

Our inference is modular and compositional. It is modular in the sense that it
can analyze any given set of classes L. Unknown callees in L are handled using
appropriate defaults. Callers of L can be analyzed separately and composed with
L without reanalysis of L. The inference requires annotations only on sources
and sinks. Once the sources and sinks are built into annotated libraries, web
applications are analyzed without any input from the user. The modularity of
the inference allows for the effective handling of libraries and frameworks. Our
approach handles reflective object creation as well. This is possible because SFlow
does not require abstraction of heap objects; instead, it models flow from one
variable to another through subtyping. To the best of our knowledge, this is
the first type-based taint analysis for Java web applications, as well as the first
analysis that is low polynomial and yet precise.

The paper makes the following contributions:

– SFlow, a context-sensitive type system for secure information flow.
– SFlowInfer, a novel, cubic inference analysis for SFlow.
– Effective handling of reflective object creation, libraries and frameworks.
– An empirical evaluation on Java web applications of up to 126kLOC, com-

prising 473kLOC in total.

The rest of the paper is organized as follows. Sect. 2 describes the SFlow type
system and Sect. 3 describes the inference analysis. Sect. 4 describes techniques
for handling of reflection, libraries and frameworks. Sect. 5 presents the empirical
evaluations. Sect. 6 discusses the related work, and Sect. 7 concludes the paper.

2 SFlow Type System

This section first describes the basic type qualifiers in SFlow (Sect. 2.1) followed
by the extension for context sensitivity (Sect. 2.2). It proceeds to formalize SFlow
(Sect. 2.3), and combine SFlow with reference immutability (Sect. 2.4).

Type-based Taint Analysis for Java Web Applications 3

2.1 SFlow Qualifiers

There are two basic type qualifiers in SFlow: tainted and safe.

– tainted: A variable x is tainted, if there is flow from a source to x. Sources, e.g.,
the return value of ServletRequest.getParameter(), are annotated as tainted.

– safe: A variable x is safe if there is flow from x to a sensitive sink. Sinks, e.g.,
the parameter p of Statement.executeQuery(String p), are annotated as safe.

SFlow disallows flow from tainted sources to safe sinks. Therefore, we define
the following subtyping hierarchy1:

safe <: tainted

where q1 <: q2 denotes q1 is a subtype of q2 (q is also a subtype of itself: q <: q).
Thus, assigning a safe variable to a tainted one is allowed:

safe int s = ...; tainted int t = s;

but assigning a tainted variable to a safe one is disallowed:
tainted int t = ...; safe int s = t; // type error!

In the SQL injection example in Fig. 1, the return value of getParameter() is
annotated as tainted, and the parameter of executeQuery(String p) is annotated
as safe, as they are a source and a sink, respectively. The other variables are
tainted:
2 ...
3 tainted String user = request.getParameter(‘‘user’’);
4 tainted StringBuffer sb = ...; // it includes the tainted user
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 tainted String query = sb.toString();
8 stat.executeQuery(query); // type error!

Since it is not allowed to assign the tainted query to the safe parameter of
executeQuery(String p), statement 8 does not type-check, resulting in a type error.
The type error signals an information flow violation.

2.2 Context Sensitivity

Context sensitivity is crucial to the typing precision of SFlow. Note that in the
context-insensitive typing above, methods append and toString must be typed as
follows (code throughout the paper makes parameter this explicit):

tainted StringBuffer append(tainted StringBuffer this, tainted String s) {...}
tainted String toString(tainted StringBuffer this) {...}
Such context-insensitive typing is imprecise, because it types the return value

of toString as tainted. Consider the example in Fig. 2. query at line 7 is not tainted
by any input, but it is typed tainted because the return value of toString is of
type tainted. Therefore, the program is rejected, even though it is safe.

SFlow achieves context sensitivity by making use of a polymorphic type
qualifier, poly, and viewpoint adaptation.

1 Note that this is the desired subtyping. Unfortunately, this subtyping is not always
safe, as we discuss in detail in Sect. 2.4.

4 Huang et al.

1 String user = request.getParameter(‘‘user’’);
2 StringBuffer sb1 = ...; StringBuffer sb2 = ...;
3 sb1.append(”SELECT ∗ FROM Users WHERE name = ”);
4 sb2.append(”SELECT ∗ FROM Users WHERE name = ”);
5 sb1.append(user);
6 sb2.append(‘‘John’’);
7 String query = sb2.toString();
8 stat.executeQuery(query);

Fig. 2. Context sensitivity example.

– poly: The poly qualifier expresses context sensitivity. poly is interpreted as
tainted in some invocation contexts and as safe in other contexts.

The subtyping hierarchy becomes

safe <: poly <: tainted

and append and toString are typed as follows:
poly StringBuffer append(poly StringBuffer this, poly String s) {...}
poly String toString(poly StringBuffer this) {...}
The poly qualifiers must be interpreted according to invocation context. Intu-

itively, the role of viewpoint adaptation (which we elaborate upon shortly), is to
interpret the poly qualifiers according to the invocation context. In Fig. 2, poly is in-
terpreted as tainted at call sb1.append(user), and as safe at call sb2.append(”John”).
As a result, the tainted argument in the call through sb1 does not propagate to
sb2; thus, query at line 7 is typed safe, and the type error at line 8 is avoided.

The type of a poly field f is interpreted in the context of the receiver at the
field access. If the receiver x is tainted, then x.f is tainted. If the receiver x is safe,
then x.f is safe. An instance field can be tainted or poly, but it cannot be safe;
this is necessary to ensure soundness.

Viewpoint adaptation is a concept from Universe Types [3]. Viewpoint adap-
tation of a type q′ from the viewpoint of another type q, results in the adapted
type q′′. This is written as qBq′ = q′′. Viewpoint adaptation adapts fields, formal
parameters, and method return values from the viewpoint of the receiver at the
field access or method call.

The viewpoint adaptation operation is as follows:

B tainted = tainted B safe = safe q B poly = q

The underscore denotes a “don’t care” value. Qualifiers tainted and safe do not
depend on the viewpoint (context). Qualifier poly depends on the viewpoint; in
fact, it adapts to that viewpoint (context).

2.3 Typing Rules

Fig. 3 shows the typing rules over a syntax in “named form”, where the results
of field accesses, method calls, and instantiations are immediately stored in a
variable. Without loss of generality, we assume that methods have parameter this,
and exactly one other formal parameter. The SFlow type system is orthogonal

Type-based Taint Analysis for Java Web Applications 5

(tnew)

Γ (x) = qx q <: qx

Γ ` x = new q C

(twrite)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qx <: qy B qf

Γ ` y.f = x

(tassign)

Γ (x) = qx Γ (y) = qy qy <: qx

Γ ` x = y

(tread)

Γ (y) = qy typeof (f) = qf Γ (x) = qx qy B qf <: qx

Γ ` x = y.f
(tcall)

Γ (y) = qy typeof (m) = qthis, qp → qret Γ (x) = qx Γ (z) = qz
qy <: qy B qthis qz <: qy B qp qy B qret <: qx

Γ ` x = y.m(z)

Fig. 3. Typing rules. Function typeof retrieves the SFlow types of fields and methods,
Γ is a type environment that maps variables to SFlow qualifiers.

to (i.e., independent of) the Java type system, which allows us to specify typing
rules over type qualifiers q alone.

The rules create subtyping constraints at explicit assignments (e.g., x = y,
x = y.f) and at implicit assignments (e.g., assignments from actual arguments
to formal parameters). The rules for field access, (tread) and (twrite), adapt the
field f from the viewpoint of the receiver y, and create the expected subtyping
constraints. The rule for method call, (tcall), adapts formal parameters this
and p and return value ret from the viewpoint of the receiver y, and creates
the subtyping constraints that capture flows from actual arguments to formal
parameters, and from return value to the left-hand-side of the call assignment.

Let us return to the example in Fig. 2. Method append is polymorphic, i.e., it
is typed as follows:

poly StringBuffer append(poly StringBuffer this, poly String s) {...}

Let sb1 be typed tainted. The call at line 5, namely sb1.append(user), accounts
for the following constraint (for brevity, for the rest of the paper, we typically
use only the variable, e.g., user, instead of the more verbose quser):

user <: s1 B s ≡ user <: s1 B poly ≡ user <: s1
Since user and s1 are tainted, the call at line 5 type-checks. Now let sb2 be typed
safe. The call at line 6, sb2.append(”John”), accounts for constraint:

“John” <: s2 B s ≡ “John” <: s2 B poly ≡ “John” <: s2
Since string constant “John” and s2 are both safe, this type-checks as well. In
the first context of invocation of append we interpreted poly s as tainted, while in
the second context, we interpreted it as safe.

Method overriding is handled by the standard constraints for function sub-
typing. If m′ overrides m we require typeof (m′) <: typeof (m) and thus,

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

This entails qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm .

As it is evident from these typing rules, we consider only explicit flows
(i.e., data dependences). To the best of our knowledge, all effective static taint
analyses [1, 2, 5, 9, 18–20] forgo implicit flows.

6 Huang et al.

2.4 Composition with Reference Immutability

The reader has likely noticed that subtyping safe <: poly <: tainted is not always
sound. Suppose the field f of class A is poly in the following example:

tainted B tf = ...; safe A s = ...;
tainted A t = s; // because of safe <: tainted
t.f = tf; // t.f is tainted
safe B sf = s.f; // s.f is safe, unsafe flow!

The program type-checks, but the tainted variable tf flows to safe variable sf. This
is the known problem of subtyping in the presence of mutable references, also
known as the issue with Java’s covariant arrays [13].

The standard solution is to disallow subtyping for references [16]. This solution
demands two sets of qualifiers, safe <: poly <: tainted for simple types (e.g.,
int,char), and Safe,Poly,Tainted for reference types. While subtyping is allowed
for simple types, it is disallowed for reference types. Unfortunately, disallowing
subtyping for reference types leads to imprecision, i.e., the type system rejects
valid programs. It amounts to using equality constraints as opposed to subtyping
constraints, and thus, propagating safe and tainted qualifiers bi-directionally,
resulting in often unnecessary propagation [11].

We propose a solution using reference immutability, which allows limited
subtyping and improves precision. It is a theorem that subtyping is safe when
the reference on the left-hand-side of the assignment is an immutable reference,
that is, the state of the referenced object, including its transitively reachable
state, cannot be mutated through this reference.

We compose SFlow with ReIm, a reference immutability type system we
developed in previous work [8]. We run ReImInfer [8], ReIm’s inference tool, and
obtain ReIm types for all variables. If the ReIm type of the left-hand-side of an
assignment is readonly, i.e., it is guaranteed that this left-hand-side is immutable,
we use a subtyping constraint in SFlow. Otherwise, i.e., if the ReIm type is not
readonly, we use an equality constraint. For example, at (tread) x = y.f, if x is
readonly, we use constraint qy B qf <: qx; otherwise, we use constraint qy B qf = qx.
Due to space constraints, we do not describe the details of the type system.
The dynamic semantics and soundness proof can be found in the accompanying
technical report [7]. This composition approach achieves at least 20% precision
improvement over the standard approach as shown in our previous work [11].

3 Type Inference

Type inference derives a valid typing, i.e., an assignment of qualifiers to program
variables that type-checks with the rules in Fig. 3. If inference succeeds, then
the program is safe, i.e., it is guaranteed that there is no flow from a source to a
sink. If it fails, then a valid typing does not exist, meaning that there could be
unsafe flow from a source to a sink.

Type inference leverages the framework we developed in [6]. It first computes
a set-based solution S, which maps variables to sets of potential type qualifiers.

Type-based Taint Analysis for Java Web Applications 7

The key novelty over [6] is the use of method summary constraints, which refine
the set-based solution, and help derive a valid typing.

3.1 Set-based Solution

The set-based solution is a mapping S from variables to sets of qualifiers. The
variables in the mapping can be (1) local variables, (2) parameters (including
this), (3) fields, and (4) method returns. For example, S(x) = {poly, safe} denotes
the type of variable x can be poly, or safe, but not tainted. Programmer-annotated
variables, including annotated library variables, are initialized to the singleton set
that contains the programmer-provided qualifier. In SFlow, all sources and sinks
are programmer-provided, i.e., sources and sinks are annotated as tainted and safe,
respectively. Fields are initialized to S(f) = {tainted, poly}. All other variables
are initialized to the maximal set of qualifiers, i.e., S(x) = {tainted, poly, safe}.

The inference creates constraints for all program statements according to the
typing rules in Fig. 3. It takes into account ReIm: if the left-hand-side of the
assignment is readonly, the inference creates a subtyping constraint; otherwise, it
creates an equality constraint. Consider (tread) x = y.f. If x is readonly, the inference
creates constraint qy B qf <: qx; otherwise, it creates an equality constraint
qy B qf = qx. In the latter case, the inference actually creates two subtyping
constraints that are equivalent to the equality constraint. In the above example,
it creates qy B qf <: qx and qx <: qy B qf .

Subsequently, the set-based solver iterates over these constraints, and runs
SolveConstraint(c) for each constraint c. SolveConstraint(c) removes
infeasible qualifiers from the set of variables that participate in c. It works as
follows (for a more formal description, see [6]). Consider x = y.f again, and
suppose x is readonly, thus creating the sole subtyping constraint qy B qf <:
qx. Suppose that before processing this constraint, we have S(x) = {poly},
S(y) = {tainted, poly, safe}, and S(f) = {tainted, poly}. The solver removes tainted
from S(y) because there do not exist qf ∈ S(f) and qx ∈ S(x) that satisfy
qy B tainted <: qx. Similarly, tainted is removed from S(f). After processing the
constraint, S is updated to S(x) = {poly}, S(y) = {poly, safe}, and S(f) = {poly}.
If the infeasible qualifier is the last element in S(x), SolveConstraint(c) keeps
this qualifier in S(x), and reports a type error at c (we keep the qualifier in
order to produce better error reports: a type error x{tainted} <: y{safe} is more
informative than x{} <: y{safe}).

The set-based solver iterates over the constraints and refines the sets until
it reaches a fixpoint. There are two possible outcomes: (1) there are no type
errors, and (2) there are one or more type errors. If the set-based solver arrives
at type errors, this means that the programmer-provided sources and sinks are
inconsistent, and the program cannot be typed. In other words, a type error
indicates that there could be unsafe flow from a source to a sink.

Consider the Aliasing5 example from Ben Livshits’ Stanford SecuriBench Mi-
cro benchmarks2 in Fig. 4. foo is safe when b1 and b2 refer to distinct StringBuffer

2 http://suif.stanford.edu/~livshits/work/securibench-micro/

8 Huang et al.

1 void doGet(A this, ServletRequest request, ServletResponse response) {
2 StringBuffer buf = ...;
3 this.foo(buf,buf,request,response); buf = thisdoGet B b1

�� ��S(buf) = {tainted}

4 } buf <: thisdoGet B b2
�� ��S(b2) = {tainted, poly}

5 void foo(A this, StringBuffer b1, StringBuffer b2,
6 ServletRequest req, ServletResponse resp) {
7 String url = req.getParameter(”url”); req B tainted <: url

�� ��S(url) = {tainted}

8 b1.append(url); url <: b1 B poly
�� ��S(b1) = {tainted}

9 String str = b2.toString(); b2 B poly <: str
�� ��S(str) = {tainted, poly}

10 PrintWriter writer = resp.getWriter();
11 writer.print(str); str <: writer B safe

�� ��TYPE ERROR!

12 }

Fig. 4. Aliasing5 example from Stanford SecuriBench Micro. The frame box beside
each statement shows the corresponding constraints the statement generates. The oval
boxes show propagation during the set-based solution. The constraint at 7 forces url to
be tainted, and the constraint at 8 forces b1 to be tainted. The constraint at 3 forces buf
to be tainted and the one at 4 forces b2 to be tainted or poly (i.e., the set-based solver
removes safe from b2’s set). The constraint at 9 then forces str to be tainted or poly.
There is a TYPE ERROR at writer.print(str).

objects. However, when b1 and b2 are aliased, foo creates dangerous flow from
source req.getParameter to a sink, the parameter of PrintWriter.print. Note that
the constraint at line 3 is an equality constraint: b1 is mutated at b1.append(url),
ReIm infers b1 as mutable, and hence the equality constraint. The set-based
solver reports a type error at statement 11; the constraint at 11 is unsatisfiable as
it requires that str is safe, which contradicts the finding that str is {tainted, poly}.

3.2 Valid Typing

The set-based solver removes many infeasible qualifiers and in many cases, it
discovers type errors. In our experience, the set-based solver, which is worst-
case quadratic and linear in practice, discovers the vast majority of type errors,
and therefore it is useful on its own. Unfortunately, when the set-based solver
terminates without type errors, it is unclear if a valid typing exists or not, and
therefore, there is no guarantee of safety. The question is, how do we extract a
valid typing, or conversely, show that a valid typing does not exist?

The key idea is to compute what we call method summary constraints, which
remove additional qualifiers from the set-based solution. These constraints reflect
the relations (subtyping or equality) between formal parameters (including this)
and return values (ret). Such references are usually “connected” indirectly, e.g. this
and ret can be connected through two constraints this <: x and x <: ret. Note that
intuitively, the subtyping relation reflects flow: there is flow from this to x, there
is flow from x to ret, and due to transitivity, there is flow from this to ret. Once
we have computed the relations between formal parameters and return values
of a method m, we connect the actual arguments to the left hand sides of the
call assignment at calls to m. The computation of method summary constraints

Type-based Taint Analysis for Java Web Applications 9

1: procedure RunSolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy B qf and S(f) is {poly} then . Case 1
6: Add qx <: qy into C
7: else if c is qx B qf <: qy and S(f) is {poly} then . Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then . Case 3

10: for each qy <: qz in C do add qx <: qz to C end for
11: for each qw <: qx in C do add qw <: qy to C end for
12: for each qw <: qa B qx and qa B qy <: qz in C do . Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Fig. 5. Computation of method summary constraints. C is the set of constraints, it
is initialized to the set of constraints for program statements, derived as described
in Sect. 3.1 (recall that each equality constraint is written as two subtyping constraints).
S is initialized to the result of the set-based solver. Cases 1 and 2 add qx <: qy into C
because qy B poly always yields qy. Case 3 adds constraints due to transitivity; this case
discovers constraints from formals to return values. Case 4 adds constraints between
actual(s) and left-hand-side(s) at calls: if there are constraints qw <: qa B qx (flow from
actual to formal) and qa B qy <: qz (flow from return value to left-hand-side), and also
qx <: qy (flow from formal to return value, usually discovered by Case 3), Case 4 adds
qw <: qz. Note that line 4 calls SolveConstraint(c): the solver infers new constraints,
which remove additional infeasible qualifiers from S. This process repeats until S stays
unchanged.

is presented in Fig. 5. As an example, consider the following code snippet:

class A {
String f;
String get()

{return this.f;} this B f <: ret
}

A y = ...;
PrintWriter writer = ...;

String x = y.get(); y <: y B this y B ret <: x

writer.print(x); x <: writer B safe

where generated constraints are shown in the frame boxes beside statements.
The set-based solver yields S(x) = {safe}, S(y) = {tainted, poly, safe}, S(this) =
{poly, safe}, S(ret) = {poly, safe}, and S(f) = {poly}. Case 2 in Fig. 5 creates
this <: ret. This entails y B this <: y B ret since viewpoint adaptation preserves
subtyping [11]. Case 3 combines this with constraints y <: yBthis and yB ret <: x,
yielding a new constraint y <: x. Because tainted and poly are not subtypes of
safe, SolveConstraint removes them from S(y), and S(y) becomes {safe}.

RunSolver terminates either (1) with type errors, or (2) without type errors,
just as the set-based solver. When it terminates without errors, SFlowInfer types
each variable x by picking the maximal element of S(x), according to the following
preference ranking: tainted > poly > safe. This maximal typing almost always

10 Huang et al.

type-checks. In the above example, typing Γ (x) = Γ (y) = safe, Γ (this) = Γ (ret) =
Γ (f) = poly type-checks; in contrast, the maximal typing extracted from the
set-based solution, does not type-check. In our experiments, the maximal typing
always type-checks, except for 2 constraints in one benchmark, jugjobs. It is a
theorem that even if it does not type-check, the program is still safe, i.e., there is
no flow from sources to sinks. We confirmed this for the 2 constraints in jugjobs.

The inference is dominated by the algorithm in Fig. 5, which has worst-case
complexity of O(n3), where n is the size of the program (see [7] for details).

4 Handling of Reflection, Libraries and Frameworks

Reflection, libraries (standard and third-party) and frameworks (e.g., Struts,
Spring, Hibernate) are the bane of static taint analysis. Yet they are ubiquitous
in Java web applications. The type-based approach we espouse, handles these
features safely and effortlessly.

Reflective object creation Use of reflective object creation in web applications
is widespread. Ignoring it, as some static analyses do, renders a static analysis
useless. Consider the use of newInstance():

X x = (X) Class.forName(”someInput”).newInstance();
x.f = a; // a is tainted, comes from source
y = x;
b = y.f; // b is safe, flows to sink

If a points-to-based static analysis fails to handle newInstance(), the points-to
sets of x and y will be empty, and the flow from a to b will be missed. On the
other hand, handling of reflective object creation is difficult, expensive and often
unsound.

We handle reflective object creation with newInstance() safely and effortlessly.
The key is that SFlow tracks dependences between variables through subtyping,
which obviates the need to abstract heap objects. It can be shown that, roughly
speaking, if x flows to y, then x <: y holds. In the above example, x <: y holds
and subsequently a <: b holds. SFlowInfer reports a type error caused by the
flow from tainted a to safe b.

Libraries Our inference analysis is modular. Thus, it can analyze any given set
of classes L. If there is an unknown callee in L, e.g. a library method whose source
code is unavailable, the analysis assumes typing poly, poly→ poly for the callee.
This typing conservatively propagates tainted arguments to the receiver and
left-hand-side of the call assignment. Similarly, it propagates a safe left-hand-side
to the receiver and arguments at the call. E.g., String.toUpperCase() is typed as

poly String toUpperCase(poly String this)

At call s2 = s1.toUpperCase() we have constraint s1 B poly <: s2 or equivalently
s1 <: s2. Thus, a tainted s1 propagates to s2, and a safe s2 propagates to s1.

We apply the poly, poly→ poly typing to all methods in the standard library,
third-party libraries (e.g., apache-tomcat, xalan) and frameworks, with several
exceptions described in the next section.

Type-based Taint Analysis for Java Web Applications 11

Frameworks Most Java web applications are built on top of one or more
frameworks such as Struts, Spring, Hibernate, and etc. The problem with these
frameworks is twofold. First, they contain “hidden” sources and sinks, i.e., sources
and sinks deep in framework code that affect the public API. For example,
Hibernate (version 2.1) contains a public method Session.find(String s), where s
flows to query at sink prepareStatement(query). This happens deep in the code
of Hibernate. We run a version of our inference analysis and “lift” such hidden
sources and sinks to the return values and parameters of the public methods
they affect. In the above example, Session.find() is typed as

poly List find(poly Session this, safe String s)

Callers to find() in application code must handle the argument of find() as safe,
otherwise it may lead to an SQL injection vulnerability as described by Livshits
and Lam [9]. To the best of our knowledge, no other taint analysis attempts to
“lift” these “hidden” sources and sinks in the frameworks.

Second, these frameworks rely heavily on reflection and callbacks, which must
be handled in the analysis. These are notorious issues for dataflow and points-to
based analysis, which usually relies on reachability analysis. Our type-based
analysis handles these features with the method overriding constraints.

As an illustrating example, Struts defines framework classes ActionForm
and Action and method Action.execute(ActionForm form). The application built
on top of Struts defines numerous xxxForm classes extending ActionForm, and
numerous xxxAction classes extending Action. Framework code performs the
following (roughly):

1. Action a = (Action) Class.forName(”inputClass”).newInstance(); a instantiates
one user-defined xxxAction class.

2. ActionForm f = (ActionForm) Class.forName(”inputForm”).newInstance(); simi-
larly, this instantiates one user-defined xxxForm class.

3. Framework populates the xxxForm object with tainted values from sources.
4. Framework calls a.execute(f), a callback to user-defined xxxAction.execute.

In our type-based analysis Action.execute() is typed as

execute(poly Action this, tainted ActionForm form)

The method overriding constraints (recall Sect. 2.3) propagate tainted to the
form parameter of each execute method in user-defined subclasses. As a result, all
values retrieved through get methods from forms in user code are tainted, which
accurately reflects that the xxxForm object is populated with tainted values.

5 Empirical Results

SFlow and SFlowInfer are implemented within our type inference framework [6,8],
which is built on top of the Checker Framework (CF) [15]. The type inference
framework, including SFlow and SFlowInfer, is publicly available at http://

code.google.com/p/type-inference/.
The implementation is evaluated on 13 relatively large Java web applications,

used in previous work [9,18,20]. We run SFlowInfer on these benchmarks on a

12 Huang et al.

[Parameter,SQL] [Parameter,XSS]
Benchmark #Line Time (s) Type-1 Type-2 FP Type-1 Type-2 FP

blojsom 12830 15.1 0 0 0 (0%) 0 0 0 (0%)

blueblog 4139 7.5 0 0 0 (0%) 0 0 0 (0%)

friki 1843 4.5 0 0 0 (0%) 0 0 0 (0%)

gestcv 7422 10.1 1 0 0 (0%) 0 8 2 (20%)

jboard 17405 22.2 3 0 0 (0%) 0 0 0 (0%)

jspwiki 83329 126.9 0 0 25 (100%) 73 12 20 (19%)

jugjobs 4044 18.7 0 0 0 (0%) 0 0 0 (0%)

pebble 42542 50.3 0 0 0 (0%) 2 0 0 (0%)

personalblog 9943 17.6 6 0 0 (0%) 3 21 2 (8%)

photov 126886 640.2 46 0 0 (0%) 0 0 0 (0%)

roller 81171 213.4 0 0 0 (0%) 21 2 0 (0%)

snipsnap 73295 87.3 0 0 3 (100%) 1 0 0 (0%)

webgoat 8474 9.6 10 0 0 (0%) 0 0 0 (0%)

Average (15%) (4%)

Fig. 6. Inference results for [Parameter, SQL] and [Parameter, XSS]. Time shows the
running times of SFlowInfer for [Parameter, SQL] in seconds; running times for other
configurations are essentially the same. The multicolumns show numbers of Type-1,
Type-2, and False-positive (FP) type errors for the two configurations; note that a
large number of benchmarks have 0 type errors, i.e., they are proven safe.

server with IntelR© XeonR© CPU X3460 @2.80GHz and 8 GB RAM (the maximal
heap size is set to 2 GB). The software environment consists of Oracle JDK 1.6
and the Checker Framework 1.1.5 on GNU/Linux 3.2.0.

Experiments We use the sources and sinks described in detail in Livshits and
Lam [9,10]. In addition, we use 59 sources and sinks in API methods of Struts,
Spring, and Hibernate, discovered as described in Sect. 4. There are 3 categories of
sources [9]: Parameter manipulation, Header manipulation, and Cookie poisoning.
There are 4 categories of sinks [9]: SQL injection, HTTP splitting, Cross-site
scripting (XSS), and Path traversal. These sources and sinks are added to the
annotated JDK, Struts, Spring, and Hibernate, which is easily done with the
CF. Once these annotated libraries are created, individual web applications are
analyzed without any input from the user. We run the benchmarks with all 12
configurations. However, for space reasons, we report only on 2 configurations:
[Parameter manipulation, SQL] and [Parameter manipulation, XSS].

Fig. 6 presents the sizes of the benchmarks as well as the running times of
SFlowInfer in seconds. The running times attest to efficiency — for all but 1
benchmark, the analysis completes in less than 4 minutes; we believe that these
running times can be improved.

We examined the type errors reported by SFlowInfer, and classified them as
Type-1, Type-2, or False-positive (FP). Type-1 errors reflect direct flow from
a source to a sink. The following code, adapted from webgoat, is a Type-1 error:

String u = request.getParameter(‘‘user”);
String s = ‘‘SELECT ∗ FROM users WHERE name = ’’ + u;
stat.executeQuery(s);

Type-based Taint Analysis for Java Web Applications 13

Tool Name AppScan Source Fortify SCA FlowDroid SFlowInfer√
, higher is better 14 17 26 28
×, lower is better 5 4 4 9
©, lower is better 14 11 2 0
Precision p =

√
/(
√

+×) 74% 81% 86% 76%
Recall r =

√
/(
√

+©) 50% 61% 93% 100%
F-measure 2pr/(p+ r) 0.60 0.70 0.89 0.86

Fig. 7. Summary of comparison with other taint analysis tools (
√

= correct warning,
× = false warning, © = missed flow).

Type-2 errors reflect key-value dependences. The following code, adapted from
personalblog, is a Type-2 error:

HashMap map = ...; PrintWriter out = ...;
String id = request.getParameter(‘‘id’’);
User user = (User) map.get(id);
out.print(user.getName());

The tainted id is used as a key to retrieve the user from the map, then user.getName()
is sent to a safe sink (the parameter of PrintWriter.print()). This is a dangerous
flow according to the semantics of noninterference, because the tainted value
of the key affects the value of the safe sink. We classified as FP all errors that
would not lead to flow violations. Most false positives are due to our conserva-
tive assumption about unknown libraries, e.g., that a tainted argument always
propagate to the left-hand-side (see Sect. 4). The results are presented in Fig. 6.
Additional results and nontrivial examples of type errors can be found in [7].

Comparison Direct comparison with TAJ [20], F4F [18], and ANDROMEDA [19]
is impossible because the analysis tools are proprietary, and therefore unavailable.
Instead, we run SFlowInfer on DroidBench [5], which is a suit of 39 Android
apps, and compare with three other taint analysis tools – AppScan Source [2],
Fortify SCA [1], and FlowDroid [5], using the results presented by Fritz et al. [5].
The comparison with AppScan Source is an indirect comparison with TAJ, F4F,
and ANDROMEDA, because these analyses are built into AppScan Source.

For space reasons, Fig. 7, which borrows the format from Fritz et al. [5], only
presents the summary of the comparison. Detailed comparison results can be
found in our technical report [7]. Although SFlowInfer performs slightly worse in
terms of precision (due to the conservativeness of the type system), it outperforms
all other tools in terms of recall, i.e. it detects more vulnerabilities than all other
tools. Commercial tools AppScan Source and Fortify SCA detect less than 61%
of all vulnerabilities, while SFlowInfer detects 100%. FlowDroid, which targets
Android apps, not Java web applications, is more precise than SFlowInfer. This
is because it uses a flow-sensitive analysis, which unfortunately can be costly.

6 Related Work

Unfortunately, we cannot include all related work on information flow control.
More related work is discussed in the accompanying technical report [7].

14 Huang et al.

The most closely related to ours is the work by Shankar et al. [17]. They
present a type system for detecting string format vulnerabilities in C programs.
The type system has two type qualifiers, tainted and untainted; polymorphism is
not part of the core system. They include a type inference engine built on top of
CQual [4]. CQual relies on dependence graphs built using points-to analysis. In
contrast, SFlow and SFlowInfer handle polymorphism naturally, as it is built into
the type system using the poly qualifier and viewpoint adaptation. In addition,
we compose with reference immutability, thus improving precision significantly.
SFlow and SFlowInfer handle reflection and frameworks seamlessly.

Tripp et al. [20] present TAJ, a points-to-based taint analysis for industrial
applications. In order to handle Struts, TAJ treats all Action classes as entry
points. In addition, it simulates the passing of all subclasses of ActionForm to
Action.execute, by generating a constructor, which assigns tainted values to all
fields of the subclasses. In contrast, our inference analysis handles Struts by
annotating the ActionForm parameter of Action.execute as tainted. Our handling
is simpler and equally precise. Finally, according to Sridharan et al. [18], TAJ’s
reflection modeling is not scalable. In contrast, our type-based analysis does not
need abstract objects, and handles reflection seamlessly and safely.

Livshits and Lam [9] present a static analysis based on a scalable and precise
points-to analysis. In contrast, our inference analysis is type-based and modular.
Similarly to TAJ, they handle reflection by trying to infer the value of string s at
forName(s).newInstance() calls. In addition, Livshits and Lam’s analysis does not
handle frameworks, which are essential for web applications.

Sridharan et al. [18] present F4F, a system for taint analysis of framework-
based web applications. In order to handle frameworks, F4F analyzes the ap-
plication code and XML configuration files to construct a specification, which
summarizes reflection and callback-driven behavior. In contrast, our analysis
handles frameworks by inferring or adding annotations to sources and sinks in the
frameworks, which propagate to user code through subtyping. Tripp et al. [19]
present ANDROMEDA, a demand-driven analysis that improves on F4F.

Volpano et al. [21] and Myers [12] present type systems for secure information
flow. These systems are substantially more complex and powerful than SFlow.
They focus on type checking and do not include type inference, or include only
local type inference. In contrast, SFlowInfer handles large web applications.

7 Conclusions

We have presented SFlow, a context-sensitive type system for secure information
flow, and SFlowInfer, the corresponding cubic inference analysis. Our approach
handled reflective object creation, libraries and frameworks safely and effectively.
Experiments on 13 Java web applications showed that SFlowInfer is scalable and
precise.

Acknowledgements We thank the anonymous reviewers for their helpful feed-
back. This work was supported by NSF Career Award CCF-0642811 and a Google
Faculty Research Award (February 2013).

Type-based Taint Analysis for Java Web Applications 15

References

1. HP fortify static code analyzer. http://www8.hp.com/us/en/

software-solutions/software.html?compURI=1338812#.Uk4YZWRhsyk, 2013.
2. IBM security AppScan. http://www-03.ibm.com/software/products/us/en/

appscan/, 2013.
3. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of

Object Technology, 4(8):5–32, 2005.
4. J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In PLDI,

pages 192–203, May 1999.
5. C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. le Traon,

D. Octeau, and P. McDaniel. Highly precise taint analysis for Android applications.
EC SPRIDE Technical Report TUD-CS-2013-0113. http://www.bodden.de/pubs/

TUD-CS-2013-0113.pdf, 2013.
6. W. Huang, W. Dietl, A. Milanova, and M. D. Ernst. Inference and checking of

object ownership. In ECOOP, pages 181–206, 2012.
7. W. Huang, Y. Dong, and A. Milanova. Type-based taint analysis for Java web

applications. Rensselaer Polytechnic Institute Technical Report RPI-CS-13-02.
http://www.cs.rpi.edu/~huangw5/docs/RPI-CS-13-02.pdf, 2013.

8. W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. ReIm & ReImInfer: Checking
and inference of reference immutability and method purity. In OOPSLA, pages
879–896, 2012.

9. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications
with static analysis. In USENIX Security, 2005.

10. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications
with static analysis. Technical Report. Stanford University. http://suif.stanford.
edu/~livshits/papers/tr/webappsec_tr.pdf, 2005.

11. A. Milanova and W. Huang. Composing information flow type systems with
reference immutability. In FTfJP, 2013.

12. A. C. Myers. JFlow: Practical mostly-static information flow control. In POPL,
pages 228–241, 1999.

13. A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In POPL,
1997.

14. OWASP. Top ten project. https://www.owasp.org/index.php/Category:OWASP_

Top_Ten_Project, 2013.
15. M. M. Papi, M. Ali, T. L. Correa Jr, J. H. Perkins, and M. D. Ernst. Practical

pluggable types for Java. In ISSTA, pages 201–212, 2008.
16. A. Sampson, W. Dietl, and E. Fortuna. EnerJ: Approximate data types for safe

and general low-power computation. In PLDI, pages 164–174, 2011.
17. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string

vulnerabilities with type qualifiers. In USENIX Security, 2001.
18. M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg. F4F :

Taint analysis of framework-based web applications. In OOPSLA, pages 1053–1068,
2011.

19. O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. ANDROMEDA:
Accurate and scalable security analysis of web applications. In FASE, pages 210–225,
2013.

20. O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ : Effective
taint analysis of web applications. In PLDI, pages 87–97, 2009.

21. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, pages 167–187, 1996.

