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Abstract
A compute express link (CXL) pod is a collection of hosts at-

tached to a CXL memory module. It provides an opportunity

to port single-host shared-memory programs to execute on

multiple hosts in a CXL pod, where the ported application

achieves higher performance than a distributed application

that uses network for coordination. The cost of performance

scaling on a CXL pod is that applications should tolerate

partial failures, where one process or operating system fails

or reboots. Lupin is system software that includes kernel

modifications and user-level libraries to help applications re-

main available while they recover from partial failures using

the contents of CXL memory.

CCS Concepts: • Computer systems organization →
Availability; Availability; • Hardware → Memory and
dense storage;Memory and dense storage; • Software
and its engineering→ Operating systems; Operating
systems.
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1 Introduction
The emergence of Compute Express Link (CXL) memory

provides a new technology useful for the construction of

distributed systems. CXL memory allows a DRAMmodule to

be physically connected to many hosts (e.g., at least 16 [43])

via the PCIe bus. We call such a collection of machines a

CXL pod. Initial interest in CXL is driven by cloud vendors

seeking disaggregated memory solutions to allow denser

packing of client virtual machines and additional DRAM

capacity [43, 46]. In this context, CXL memory is another

tier in the memory hierarchy, like far memory [37, 40, 44,

49, 56, 65]. But proposed features of CXL memory allow it

to be dynamically shared by multiple hosts [1], providing

an intermediate hardware configuration between a network

of machines, each with their private memory, and a shared

memory multiprocessor with a unified memory.

Single-host multi-threaded applications are typically more

efficient than distributed applications because they use shared

memory rather than the network for coordination, but that

comes with a cost of limited scalability. The CXL pod hard-

ware provides an opportunity to scale multi-threaded appli-

cations written for a single host to execute on multiple hosts

sharing CXL memory, by allowing applications to explic-

itly allocate CXL memory. For example, in-memory MapRe-

duce [45, 48] is a popular way to write multi-threaded pro-

grams using a simple programming model that achieves high

performance [25]. Running in-memoryMapReduce on a CXL

pod allows it to achieve better scalability while preserving

single-host programming simplicity and performance.

However, applications running on a CXL pod need to deal

with partial failures—what happens when a thread, pro-

cess, or operating system on one host terminates abnormally

while the application continues running on other hosts. Re-

cent work shares this failure model [51, 59, 64]. For example,

highly available applications should continue processing

https://doi.org/10.1145/3698783.3699377
https://doi.org/10.1145/3698783.3699377
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even during operating system restarts, which can take min-

utes, without pausing the entire application. Availability

requires synchronization primitives (used extensively in the

OS and multi-threaded applications to protect shared data

structures) that tolerate partial failures, as well as data struc-

tures that safely permit accesses concurrent with threads

that have failed or are in the process of recovering from a

failure.

Lupin
1
is system software that helps applications running

on a CXL pod tolerate partial failures. It addresses the fol-

lowing three fundamental problems introduced by partial

failures.

• Failure detection and notification. The Lupin OS

detects application process and kernel thread failures.

Each Lupin OS runs a protocol to detect the failure

of other OSes. (§3.3) Processes can enroll in CXL con-

trol groups (§3.4) to receive failure notifications from

another host.

• Failure recovery. Lupin provides recoverable locks

(§3.5) and a scheduling library to enable applications to

structure their recovery actions. Lupin also establishes

correctness conditions for recovery—crash consistency

and detectable execution [24] (§2).

• Memorymanagement. Lupin provides a kernel-level

memory allocator that tolerates partial failures using

a recoverable lock.

We develop and evaluate Lupin using single-host multi-

threaded software including two programs from the PARSEC

benchmarks [12] and four programs running on a shared-

memory MapReduce framework [45, 48]. These workloads

are originally written for a single host shared-memory mul-

tiprocessor. While the MapReduce [22] design comes from

distributed systems, shared-memory MapReduce [45, 48]

does not tolerate partial failures. Lupin’s motivation to tol-

erate partial failures on a CXL pod applies to any highly

available application and any long-running application with

significant intermediate state that is expensive to checkpoint.

Our evaluation shows that Lupin enables applications to

be resilient to partial failures. When running MapReduce

and PARSEC programs, failing and restarting half of the

processes slows the performance down by at most 7.8%.

2 Motivation and background
Lupin supports porting single-host, shared-memory appli-

cations to a CXL pod and all of the applications we port are

a single process with multiple threads. Single-host systems

are easier to develop, maintain and deploy and do not suf-

fer average and tail latency problems from network-based

communication. Lupin supports multi-process applications

that share memory, but to simplify exposition we assume

that single-host systems have a single process with multiple

1
A Lupin (also known as a bluebonnet) is a genus of plant with attractive

flowers that have a high-protein seed pod.

threads, whereas the CXL pod version will have multiple

processes, each running on a different host and each con-

taining multiple kernel threads (also known as light-weight

processes or pthreads–they execute user code but are sched-

uled by the kernel).

Recovering state fromCXLmemory. The CXLmemory is

shared by and accessible to all the operating systems running

on the connected hosts. The memory device itself is volatile

DRAM, but it remains powered on and can retain state while

any host that is attached reboots. The contents of CXL mem-

ory persists across process and OS restarts (planned and

unplanned). If system software can restore the state of its

computation from CXL memory, a CXL pod will have less

downtime and can support higher utilization by restarting

individual processes rather than entire applications.

Lupin’s goal is increased scalability and availability, which

we believe can be provided at a reasonable cost by CXL mem-

ory. Just as DRAM can be made reliable with error correcting

codes (ECC), a CXLmemorymodule supports strong, custom

ECC implemented in the CXL controller [16]. Other recent

work assumes software can recover its state from CXL mem-

ory [59, 64]. Orthogonal techniques are necessary to make

results persistent, replicated, or geo-replicated.

Why tolerate partial failures? Use of common synchro-

nization primitives, like locks, that are not fault-tolerant

requires applications and operating systems to fully restart,

converting partial failures to total system failures. Locks and

many common synchronization primitives like blocking mu-

texes are not fault-tolerant. Linux and Windows use many

locks and other non-fault tolerant synchronization and if

they share CXL memory then they will have to fully restart

on a partial failure—if any operating system reboots, the

entire pod must reboot.

It is possible for simple applications to ignore partial fail-

ures and have an “all-or-nothing” approach to fault toler-

ance where if any application process fails then the entire

distributed application fails. Such a system will restart from

persistent storage, and if it has certain processing guarantees

like doing operations exactly once, it will have to regularly

checkpoint or log to persistent storage (usually at significant

performance cost [61]).

We argue that highly-available and long-running appli-

cations will want to tolerate partial failures, so the system

should support such applications. Tolerating partial failures

allows one of the machines in a CXL pod to reboot with-

out having to reboot all the machines, for example, and also

allows applications to simply restart a failed thread or pro-

cess. Other work shares the motivation of high availabil-

ity [51, 64].

Failure model. Lupin assumes crash-stop failures where

application threads and processes and also operating systems
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Metric Intel SPR Intel SPR Intel ICX Intel ICX
Local CXL Local NUMA

Read lat. (ns) 1 (2.3×) 73 192 (2.63×)
Total BW (GB/s) 1 (0.072×) 147 47 (0.32×)
BW/ch (GB/s) 1 (0.58×) 18.4 5.9 (0.32×)

Table 1. Intel SPR is Sapphire Rapids and Intel ICX is Ice Lake. The

CXL memory module is a commercial prototype and performance

measurements have been normalized at the request of the hardware

manufacturer, so we provide non-normalized measurements of ICX

for context. The ratio of remote to local is in parentheses.

may fail at any time, but such failures are not Byzantine. Sim-

ilar to other fault-tolerant systems [62], Lupin does not tol-

erate random scribbles into shared CXL memory. Under this

failure model, the Lupin OS guarantees crash consistency

via durable linearizability [31] where individual operations

appear to be executed atomically (at a linearization point)

between their invocation and response, and recovering from

a failure returns to a prefix of the sequence of linearized

operations.

Lupin also requires detectable execution [24] for partial

failures, as is common in persistent memory systems [9, 10,

18]. Detectable execution ensures the application has written

enough state in advance of its operations to recover fully if it

crashes: where recovering fully means it knows what opera-

tion it was attempting and whether that operation succeeded

before the crash. Informally, a detectably recoverable data

structure enables a programmer to ensure that all operations

occur exactly once, even in execution histories that contain

concurrent operations and failures.

Threat model. We assume a setting where administrators

are trusted, as is system software. For this work, system soft-

ware is the OS, but it could be the hypervisor. Different OSes

in a CXL pod share data structures and trust the informa-

tion they store there, though the kernel protects all its data

structures from user programs. Administrative tasks like as-

signing unique 32-bit IDs to hosts (§3.1) can be accomplished

by trusted administrators in many ways such as: setting the

hostname or using the physical port number on the CXL

device.

2.1 Hardware model

Compute Express Link (CXL) is an interconnect offering

high-bandwidth, low-latency connectivity between host CPUs,

heterogeneous memory, and I/O devices running on PCIe 5.0

and 6.0. The CXL.mem protocol allows a host CPU to access

CXL memory at cacheline granularity.

There are hardware prototypes of CXL standard 1.1 [52].

The CXL 3.1 specification [1] allows CXL memory to be

accessed by multiple hosts concurrently and coherently. Cur-

rent proposals can scale to 16 connected hosts without undue

latency and bandwidth penalties [43].

Performance assumptions. Table 1 shows the latency and
bandwidth of the CXL memory device we use for evaluation.

Both local DRAM and our CXL memory device are based on

DDR5 4800 DRAM. In our system, local DRAM has 8 mem-

ory channels with a maximum bandwidth of 8×38.4 GB/s,
whereas the CXLmemory module has a single memory chan-

nel connected to a PCIe 5.0 x8 link. We measure the latency

and bandwidth values of local DRAM and CXL memory

using Intel’s Memory Latency Checker (MLC) [29]. In the

table, we present unloaded latency and bandwidth with a

3:1 read-write ratio. CXL has higher read latency and lower

bandwidth than local DRAM. The CXL memory access la-

tency and bandwidth are in line with the latest study on

characterizing commercial CXL memory devices [52].

Coherence and consistency. This work assumes that CXL

memory is as coherent and consistent as local DRAM, with

hosts and devices participating in all hardware coherence

traffic [1]. It now seems likely that CXL devices will only

support hardware cache coherence on a small part of the

memory space, which will require greater porting effort for

software-based coherence [32].

For our CXL memory measurements, we use a CXL 1.1

module attached to a single machine, so its single-machine

cache coherence is emulating what will be multi-machine

cache coherence when CXL 3.1 memory becomes available.

The cost of cache coherence for CXL memory on real CXL

pod hardware will likely exceed the cost of single-node co-

herence. However, we currently have no way to model the

multi-node coherence cost that will characterize this future

hardware. Our experiments do use real CXL hardware, not a

NUMA memory node, so our emulation has higher fidelity

than some recent work [43, 46].

Global persistent flush. For Lupin’s evaluation, we as-

sume global persistent flush (GPF) [50] which guarantees

that a processor has enough energy to write the data from all

committed instructions back to memory even if the power

fails, alleviating programmers from having to explicitly flush

data into the hardware’s persistence domain. We think GPF

is likely given Intel’s history with persistent memory. Ini-

tially, Intel required explicit cache flush instructions and a

pcommit instruction to ensure durability for persistent mem-

ory [8]. It deprecated pcommit in 2016, and then announced

extended asynchronous DRAM Refresh (eADR) [27] in late

2020, which removed the requirement of explicit cache flush

operations. GPF is similar to eADR at the microarchitectural

level, but eADR is specific to persistent memory and does not

apply to CXL memory. A recently announced CXL 3.0 device

consisting of DRAM and NAND flash says it will support

GPF [20].

2.2 Performance constraints on recovery

To determine the design constraints on Lupin, we measure

the restart times of processes: Cavalia [60] is 1.5ms, mem-

cached [6] is 1.1ms, and the Apache http server [5] is 12.3ms.

We conclude that some applications can tolerate 1-15ms for

a thread or process to restart, while others should provide
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Figure 1. Architectural overview of Lupin. The OS heartbeat sec-

tion has all the instance identifiers (§3.1) and generation numbers

for all OSes and applications using shared CXL.

cooperative recovery where a live thread recovers the state

of the dead thread.

We measure the restart times of operating systems: KVM

virtual machine is 79s, Intel SPR (local server) is 147s, and

Intel ICX (cloud server) is 137s. OS restart takes far too long

to pause application progress and the times are long enough

to motivate pod-wide rescheduling decisions.

We summarize the performance constraints on Lupin.

• Applications can wait for a thread/process restart, or

its threads/processes can cooperate for faster recovery.

• Applications cannot wait for operating system reboot.

Applications should be notified about OS reboot and

might want to take scheduling action (e.g., create a

process on a non-failed node).

3 Detecting, notifying and recovering from
faults

Figure 1 shows an overview of Lupin with one application

running on two hosts, each with its own OS. Each OS runs a

single process inside of which are two threads. The processes

are linked with an allocation library whose metadata is in

shared CXL memory. Processes can use local DRAM for data

structures or they can use shared CXL memory. Each thread

maintains a log in CXL that records operations for recovery.

Shared CXL memory is split between a section used by the

application (above the dashed line) and a section used by

the OS (below the dashed line). The Lupin OS uses standard

page tables to provide protection–applications can read and

write their CXL heap shared between hosts, but cannot read

and write the CXL heap of other applications or the kernel.

Beside application state, the Lupin OS uses CXL memory

for kernel data structures shared between OSes on different

hosts (depicted below the dashed line in Figure 1). The OSes

support failure notification and detection by maintaining

group information for applications executing on more than

one host (§3.4). The OSes share an area for a heartbeat area

monitored by the CXL Pod fabric manager for fast failure

detection (§3.3). The fabric manager can power cycle hosts in

the CXL pod through a baseboard management controller [1,

53].

Lupin provides kernel-level CXL memory allocation. A

user-level memory allocator that supports detectable execu-

tion is beyond the scope of this work.

3.1 Instance identifiers

All resources in Lupin are owned by instance ids. Instance

identifiers allow operating systems and user-level threads

to reason about failures. In our prototype, we assign unique

thread ids via program arguments. These arguments are still

available if a process needs to be restarted because of a par-

tial failure, so thread ids are stable across partial failures.

They do not need to be stable across different application

instances (where the entire application is restarted). If an ap-

plication wants to avoid malicious processes masquerading

as recovering threads, the OS provides a cross-host process

control group that can check permissions (see §3.4).

The fabric manager (or a trusted administrator) assigns

unique ids to each OS (§2) that remains fixed across reboots.

There are many methods the fabric manager could use to

generate these ids, like physical port numbers or MAC ad-

dresses. An instance identifier (ii) is the combination of

the unchanging ii.id and a monotonic generation number

ii.gen which is incremented at least once for every failure.

The current generation numbers for all id’s are stored in

CXL memory, and any OS or process can read them (denoted

by generation[id]). If a resource (like a lock) is owned

by an instance identifier ii, and a thread finds that ii.gen
!= generation[ii.id], then it knows that the instance

that owned this resource has failed. For iis stored in data

structures (like locks), if we use 32-bit ids and 32-bit iis,
then a 64-bit load/store on any architecture can read/write

both quantities atomically.

3.2 CXL memory mapping (offset pointers)

CXLmemory regions can bemapped to different addresses in

user memory during different executions (as is the case with

persistent regions [19, 57]). Lupin adopts offset pointers [17]

to make CXL-resident data structures position-independent.

An offset pointer stores the offset between the pointer loca-

tion and the object it points to, which means that non-CXL

code can be ported to run in CXL simply by changing all

pointer types to offset pointers.

3.3 Failure detection

Detecting thread/process failures. In Lupin, each OS can

detect the failure of a local process or thread within that

process, as is standard in Linux. Lupin does not track user-

level coroutines, it only supports kernel-level threads (also

known as light-weight processes–they execute user code but

are scheduled by the kernel).

Detecting OS failures. Lupin detects OS failure using heart-

beats in shared CXL memory, which are monitored by the
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CXL pod fabric manager [1]. All OSes increment their heart-

beat counter in CXL memory (every 8ms in our prototype).

The fabric manager polls the heartbeat (every 16ms in our

prototype). We assume the fabric manager can reset any

machine in the CXL pod, which allows it to be a reliable

failure detector. If an OS misses a heartbeat, the fabric man-

ager power cycles the failed (or slow) OS and increments

its generation number The reset ensures that the currently

running OS has been terminated and a new OS instance is

booting.

Killing an OS when we are unsure if it is slow or failed is a

technique used by previous reliable failure detectors [26, 41].

After the fabric manager restarts a host, it notifies the other

operating systems of the failure via a message signaled in-

terrupt (MSI) sent to all OSes via the PCIe bus. The MSI is a

low latency notification so remaining OSes can start recov-

ery, but it can be masked or lost–other OSes do not need to

receive the MSI to remain correct. Lupin can deploy primary

and backup fabric managers to guard against fabric manager

failures [30]. Fabric managers can define their own heart-

beat protocol, but if the manager reads and copies counters

incremented by each OS, then a failure of the primary fabric

manager can only delay the detection of a true OS failure, it

cannot create false positives.

3.4 Failure notification

CXL control groups (CxlCG).Agroup of processes sharing

CXL memory benefit from additional system services for the

group, so Lupin adds a system call to create and configure

a CXL control group (CxlCG). Security is beyond the scope

of this paper, but creating and joining a CXL control group

will require credentials that allow admission control.

Membership. A cross-host process group can be informed

of membership changes–a thread or operating system in the

group has exited or rejoined. As explained in Section 3.3,

Lupin detects the failure of threads and operating systems.

If a CxlCG member thread abruptly terminates, that process’

operating system will notify the group. As soon as an OS

detects another OS’s failure, it notifies the group about the

OS failure and the failure of all user threads running on that

OS.

Scheduling in response to failure. Lupin provides a sim-

ple library to make control plane decisions based on failures.

An application can use the library to create a control thread

that responds to local thread failures by restarting the thread.

If the application needs to tolerate process failures, it cre-

ates a control process that can restart the data processing

process if it fails. If the control process fails, an OS service

like systemd on Linux can restart it. This mode of operation

is similar to how system daemons attain high availability.

Lupin applications can also take action on operating system

failures, for example, rescheduling all threads on OSes that

have not failed.

3.5 Failure recovery (locks and applications)

While the literature on recoverable locks is extensive, we

found that most of the designs placed too much emphasis

on fairness over efficiency. They also differ in recovery as-

sumptions. For example, the Katzan and Morrison [36] lock

requires a “capsule recovery” where the program’s entire

memory state must be restored for recovery. This is infeasible

for an operating system.

Lock recovery in Lupin is simpler than in some published

designs because global persistent flush (§2.1) ensures that all

successful atomic operation are globally visible and Lupin

has reliable failure detection based on the CXL fabric man-

ager.

Lupinmodifies two simple and popular locks to be recover-

able: a test-and-test-and-set (TATAS) lock and the MCS queu-

ing lock [47]. In both cases, Lupin stores the lock owner’s

instance ID in the lock structure and in the MCS case we use

a published design [13]. The TATAS lock does not provide

fairness, while the MCS lock provides first-come-first-served

ordering.

Lupin assumes that every thread and OS has a log in a

known location in CXL memory that will be available during

recovery. The log will identify all locks that were held when

the thread or OS failed.

Application recovery. PARSEC and MapReduce share re-

covery code. We structure all these applications to partition

their inputs into work units and compare-and-swap results

into a results data structure. Recovered threads simply con-

tinue processing input work units. Re-execution of work

units might do useless work, but the compare-and-swap for

the results ensure that all input is processed exactly once.

In our prototype, we find that tasks executing for at least

5 ms do not create significant scheduling overhead while

minimizing wasted work.

3.6 Kernel-level memory allocation

The kernel-level allocator is used relatively infrequently as its

role is to provide large chunks of memory that are allocated

at a fine-grain by the user-level memory allocator. Lupin

uses a single, global, recoverable lock, trading parallelism

for ease of recovery.

The allocator is based on a buddy allocator [4] that stores

allocation metadata in a binary tree encoded in a bitset. The

following changes are sufficient to allow recovery after the

kernel has rebooted.

• Protect metadata with a global recoverable lock (§3.5).

• Implement transactional semantics by adding a redo

log in CXL memory for each OS. Mechanically con-

vert each operation from a sequence of direct memory

writes into log entry appends, concluding with a check-

sum commit entry before executing the log.

• Add a recovery code path that confirms lock ownership

and re-executes the log.
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Lock transfer. Lupin protects the kernel memory allocator

with a single recoverable lock, so it can atomically transfer

lock ownership to a different OS to increase availability. The

fabric manager sends the MSI interrupt only after it makes

sure that the failed or slow OS has reset and is rebooting. All

live OSes that gets the MSI signal will try to gain ownership

of the lock by atomic compare swap on the instance identifier

in the lock. If other OSes mask the interrupt or ignore it, the

failed OS itself will eventually recover. Only one OS will

successfully complete the lock transfer, and it will complete

or abort the in-progress action started by the failed OS, based

on its log.

4 Implementation
CxlCG kernel/user communication. Our Lupin proto-

type uses netlink for group notification and communication,

so processes that want timely notification need to have a

thread dedicated to blocking on the netlink socket, waiting

for communication. Netlink is not a reliable transport [38],

but the OS will know if a message cannot be delivered, so it

will retry.

MapReduce. MapReduce originates in distributed comput-

ing [22]. However, Phoenix [48] and Metis [45] show that

MapReduce is also an efficient paradigm for structuring

shared memory applications. A recent comprehensive sur-

vey of synchronization in shared memory applications [25]

identifies MapReduce as a popular framework for writing

shared-memory, parallel programs. Shared-memory MapRe-

duce does not tolerate partial faults, but the Lupin port does

tolerate partial faults using CXL-resident crash consistent

hash tables.

The Lupin port of MapReduce is based on CXL-Map-

Reduce [64], a single-machine, shared-memory MapReduce

framework similar to Phoenix [48]. For simplicity, ourMapRe-

duce (and CXL-MapReduce) does not sort or merge final

results like Phoenix.

CXL-MapReduce [64] only supports a fixed-number of

tasks (e.g., one task for each worker) and thus does not sup-

port dynamic load balancing. Inspired by Metis [45], we

extend it to use a global task list for work distribution. Only

WordCount and KMeans run on CXL-MapReduce, so we also

extend it to support Matrix Multiply and Histogram.

5 Evaluation
Our evaluation machine has the following configuration,

which uses a commercial, physical CXL memory module:

• OS: Ubuntu 22.04.2 LTS (Linux kernel v5.19)

• CPU: 2× Intel
®
Xeon 8460H CPUs @2.2 GHz [28] 40

cores and 105 MB LLC per CPU

• RAM: 8× DDR5-4800 channels on each socket (16 in

total), 1× DDR5-4800 CXL memory with PCIe 5.0 ×8
• NIC: BlueField-2 ConnectX-6 Dx, 100 Gbps

We disable hyper-threading and turbo boost and set the

CPU frequency governor to performance. Unless otherwise

DRAM (𝜇s) CXL (𝜇s)

mean std mean std

TATAS 5.43 2.27 5.42 2.34

recoverable TATAS 5.50 2.37 5.56 2.33

MCS (qspin) 7.42 0.11 7.49 0.21

recoverable MCS [13] 7.86 0.17 8.09 0.07

JJ [34] 99.97 4.38 95.71 0.21

Table 2.Measure the overhead of adding recoverability to a spin

lock and an MCS lock. The locks guard a shared counter contended

by 32 threads. Mean is the mean of 10 trials and std is the standard

deviation. TATAS stands for test-and-test-and-set.

specified, we use 16 VMs (each with 2 CPU cores) to emulate

16 machines connected to a shared CXL memory module,

which is our model of a CXL pod.

Porting effort. Porting applications to build on Lupin took

two days. MapReduce and PARSEC use a lock-free singly

linked list and hash table, and they have identical recovery

code. Using these data structures took one day for PARSEC

and three days for MapReduce.

Recoverable locks. Table 2 compares the performance

of Lupin’s recoverable locks with their original implemen-

tation. The MCS lock is ported from the Linux kernel to

userspace [3]. The experiments are run at user-level with

32 threads incrementing a shared counter a fixed number

of times. All threads are pinned to their own core, and we

use Linux’s SCHED_FIFO scheduler as recommended by the

pthread manual [2]. In DRAM and CXL, lock performance

is similar, with TATAS having much higher standard devia-

tion than MCS, demonstrating its weak fairness properties.

The JJ [34] lock has the high latency characteristic of more

complex recoverable locks. We conclude that tracking the

owner’s instance identifier (§3.1) for recoverability in Lupin

is efficient and prefer the recoverable TATAS lock in Lupin.

Failure detection and notification. We measured the la-

tency of Lupin’s process failure notification via netlink at an

average of 106𝜇 with 20𝜇s standard deviation (from 7 trials).

Process failure detection is fast and stable (average 175𝜇s,

standard deviation 4.4𝜇s) because the OS tracks process exits.

For OS failure detection, the fabric manager has to spend

at least 16ms to detect an OS failure due to its polling interval.

Sending an MSI interrupt to one OS takes about 3-20𝜇s [21]

and sending MSIs to all remaining OSes takes 45-300𝜇s.

Memory allocation. We evaluate the kernel allocator la-

tency by allocating and freeing 100 objects ranging from

1-16MB. The average latency of allocation is 1.6𝜇s and free

is 2.0𝜇s. The latency of the allocation is independent of the

size of the allocation, but the overhead to initialize the page

tables that map the allocation into the process’ address space

is proportional to the allocation size.

MapReduce and PARSEC. Table 3 shows that our port

of MapReduce (Lupin-MapReduce) has excellent scalability

for our CXL pod configuration (the Lupin column) and it
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Phoenix Metis CXL-SHM Lupin-1 Lupin

WordCount 9.54 11.09 2.46 0.67 (28.5×) 0.68 (28.0×)
KMeans 3.99 3.83 4.27 3.78 (29.4×) 3.86 (28.8×)
Matrix Multiply 5.23 1.41 6.48 5.13 (32.4×) 5.24 (31.7×)
Histogram 0.25 0.09 0.19 0.23 (13.2×) 0.25 (12.2×)

BlackScholes 2.24 (27.9×) 2.36 (26.5×)
Dedup 0.49 (23.8×) 0.73 (15.9×)

Table 3. All times are in seconds. Lupin runs in 16 VMs, each with

2 CPUs, the remainder, including Lupin-1 run in 1 VM with 32

CPUs. Phoenix and Metis run in DRAM. CXL-SHM, Lupin-1 and

Lupin use the commercial CXL module instead of local DRAM.

Parentheses are speedups relative to single-threaded performance.

is only 3.6% slower than the 1 VM case (Lupin-1) using the

geometric mean. It outperforms Phoenix, Metis and CXL-

MapReduce in all workloads except Histogram, where the

performance is bottlenecked by the limited read bandwidth

of CXL memory [52]. We measure Histogram executing at

near linear speedup on different hardware while consuming

33GB/s, which is more bandwidth than our CXL device can

support. By default, Phoenix and Metis sort intermediate

keys, which causes their poor performance on WordCount

(the input of WordCount contains 1 million keys).

Table 3 shows that the Lupin port of BlackScholes has

near linear scalability and similar performance between the

single VM (Lupin-1) and the pod (Lupin), Dedup has serial

compute sections, so its speedup is limited by Amdahl’s law.

Both applications have serial initialization phases (parsing

the input data and copying it into CXL memory) which we

omit from our measurements; we only report the speedup

for the concurrent phase.

Tolerating process failures. Table 4 shows the perfor-

mance impact of process failures on end-to-end runtimes

while executing on our emulated CXL pod. We crash 0, 1,

and 8 of the processes during execution. The crashes are

evenly spaced during the workload. For Lupin-MapReduce,

each process crashes right before the commit point, which

means the maximum amount of work is lost. The perfor-

mance consequences, even for high process restart rates, is

under 8%. 0% slowdown means that even with failures, the

performance of the benchmark was unchanged.

Small tasks reduce the overheads from process failures,

but if tasks are too small, Lupin incurs overhead to schedule

them. All individual tasks in our benchmarks execute for

less than 5 ms, but all of them are long enough, so they do

not cause scheduling overheads.

6 Related work
CXL tiered memory management. Recent work explores

using CXL to enable memory disaggregation and pooling

for improved utilization and reduced costs in datacenter

servers [11, 42, 43]. Key research directions include optimiz-

ing CXL memory pool configurations for performance and

cost savings [46], developing resilient memory managers

Crashes Word
Count KMeans Matrix

Multiply Histogram Black
Scholes Dedup

0 0.68s 3.86s 5.24s 0.23s 2.36s 0.74s

1 0.0% 0.0% 0.0% 0.0% 0.0% 3.4%

8 2.9% 2.5% 4.6% 7.8% 0.0% 6.3%

Table 4. Performance slowdowns for Lupin-MapReduce and Lupin-

PARSEC with different numbers of process failures.

and intelligent page placement policies to mitigate CXL’s

higher access latency [39, 52, 64], and leveraging CXL’s ex-

panded memory capacity and bandwidth for large-scale ap-

plications [33]. These approaches treat CXL as a memory

tier that is not directly visible to user software, though some

recent work has looked at how to provide an extensible in-

terface [54, 55].

CXL and partial failures. Other recent work [51, 59, 64]

makes the same observation as this work that CXL systems

can observe partial failures, with FUSEE [51] and rTX [59]

focusing on RDMA and remote memory nodes. CXL-SHM

tolerates partial failures for CXL memory, but requires ref-

erence counting, whereas Lupin relies on explicit memory

management and recoverability.

RDMA. RDMA [7, 14, 23, 35, 58, 63] is similar to CXL mem-

ory in that it provides access to greater memory capacity,

but CXL memory is cacheable by the CPU and has lower

latency (e.g., hundreds of ns [43]) and higher bandwidth.

Some work has been done to make RDMA-accessible mem-

ory cacheable [14, 58].

Far memory. Several systems provide fault-tolerant far

memory via replication [40, 65], which is an orthogonal

problem to tolerating application and OS failures within a

CXL pod.

Recoverability. The availability of persistent memory has

sparked interest in recoverable data structures [9, 10, 18,

24] which inspired our data structure design. None of the

published systems support detectable recoverability in the

operating system. Persistent memory systems consider any

OS failure a total failure. They do not have the notion of

multiple, cooperating OSes [15, 19, 57].

7 Conclusion
Lupin introduces software infrastructure to support porting

single-host applications to run on multi-host CXL pods with

high performance and tolerance of partial failures. Lupin

demonstrates that awide range of applications can be adapted

to CXL pods for higher performance, better scalability, and

fault tolerance.
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