
Emergent Turing Machines and Operating Systems
for Brain-Like Auto-Programming for General Purposes

Juyang Weng,1,2,3,6 Zejia Zheng,1,2,6 Xiang Wu,4 Juan Castro-Garcia,1 S. Zhu1,6, Q. Guo,5 X. F. Wu5

1Department of Computer Science and Engineering, 2Cognitive Science Program, 3Neuroscience Program
Michigan State University, East Lansing, MI, 48824 USA

4School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China
5Department of Electronic Engineering, Fudan University, Shanghai, 200433, China

6GENISAMA LLC, 4460 Alderwood Dr. Okemos, Michigan 48864 USA

Abstract
In Artificial Intelligence (AI) there is a wide gap between
the symbolic school and the connectionist school, but in
both schools, different task-purposes require different learn-
ing methods. Different sensory modalities, such as video,
sound, and text, also require different learning methods. In
a larger scale, there is further a wide gap between brain scene
and computer science — human brains automatically gener-
ate programs for general purposes but computers still cannot
do so. Our Developmental Networks (DN) here are meant
for bridging the gap in AI by further bridging the larger
gap between brain science and computer science. The DN
learning engine automatically emerges Turing Machine logic
into its neural network. The AI Machine Learning (AIML)
Contest 2016 is the first machine-learning contest that used
task-nonspecific and modality-nonspecific learning engines.
It used the DN engine for a variety of tasks and modali-
ties. The organizers and contestants independently verified
a prototype of DN for vision, audition, and natural lan-
guages acquisition and understanding (English and French
co-acquisition). The Auto-programming Operating Systems
(AOS) developed by GENISAMA LLC is meant to facilitate
developers to train for many different applications using the
same DN engine by following a standard for the body setting
file.

Introduction
Since Cresceptron published 1991, the first deep learning
neural network for natural images of clustered 3D world
(Weng, Ahuja, and Huang 1997), a wide variety of deep
neural networks have increased the domains of demonstra-
tion (LeCun, Bengio, and Hinton 2015; Schmidhuber 2015;
Jordan and Mitchell 2015). Neural networks numeric com-
putation and learning allow interpolative approximation in
high-dimensional parameter spaces that seems to be more
uniform for large AI problems than traditional symbolic
methods.

However, there is a misconception that confuses symbolic
networks with neural networks. Note that every symbolic
algorithm may correspond to a (non-neural) symbolic net-
work. Let us consider camera as an example but the ideas
apply to any sensing modality: A robot takes an image from
its 3D cluttered world but its context is to find and recognize

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an object of interest: Jim. In symbolic nets, each input line is
monolithic: It must by itself represent a (human handcrafted)
monolithic object of interest (e.g., Jim, David, a tree, an ob-
ject, or an event). For this reason, many early networks are
symbolic networks, e.g., (Carpenter, Grossberg, and Rosen
1991) and (Siegelmann 1995).

In neural nets, each input line is non-monolithic: In our
vision example, each line is only a pixel in the image of a
cluttered 3D world which contains many objects. A pixel
by itself does not have any monolithic symbolic meaning of
an object of interest (e.g., Jim). The entire input image is
contaminated (e.g., pixels that contain information of Jim
are contaminated by many factors such as lighting, view-
ing angle, and where Jim is), partial (e.g., only visible part
of Jim), and cluttered (e.g., in each input image there are
many objects irrelevant to Jim). As we know, all humans and
robots must take the lines of sensors/motors that are non-
monolithic, because they interact with physics (i.e., physical
worlds).

This non-monolithic concept is useful for us to understand
biological brains and to approach strong AI (i.e., AI that are
not focused on a narrowly defined task). Furthermore, in-
tractable challenges in three AI areas — vision, audition,
and natural language understanding — call for strong AI.
The direction of Autonomous Mental Development (Weng
et al. 2001) showed that the learning algorithm must also be
task-nonspecific.

Biologically, the modality-general architecture of the De-
velopmental Network (DN) was motivated by the following
studies that demonstrated surprising plasticity of the brain
early in life:

1. Cells in the V1 area of the cat selectively respond to the
left eye, the right eye, and both eyes in the normal kitten;
but if one eye is stitched from birth, they respond only
to the other eye (Wiesel and Hubel 1965). It appears that
from which eye each V1 neuron receives sensory input is
plastic.

2. An amputation of auditory pathway early in animal life
enabled the visual projections to grow into the auditory
pathway. The auditory cortex emerged visual represen-
tations and performed visual capabilities (VonMelchner,
Pallas, and Sur 2000). Namely, not just which eye, but the
modality of a pathway is plastic.



3. In humans born blind, the visual cortex is recruited by
audition and touch (Voss 2013). It appears that not only
non-human animals, human visual areas were recruited
by other modalities.

The DN takes advantage the generality of muscle “states”.
Skills that are declarable (Sun, Slusarz, and Terry 2005)
(e.g., through English) can be declared verbally through
muscles in the vocal tract. Non-declarable skills (e.g., riding
a bike) are also executed through muscles. These numerical
networks do not necessarily have symbols inside.

Theory Brief
Next, we briefly outline the theory due to the space limit.
Symbolically, consider the above “states” as symbolic
“states” of a Finite Automaton (FA). The transition function
of an FA takes the current state q ∈ Q and the current input
σ ∈ Σ and maps (q, σ) to the next state q′ ∈ Q, but for con-
venience we write the pair of q and σ vertically as a vector:[

q
σ

]
→
[
q′

σ′

]
. (1)

where σ′ is the next input, or the predicted next input when
the input is absent. All symbols here are monolithic. This
new representation of FA, q at top and σ at bottom, is useful
for our discussion below about internal representation in Y .

Why FA? In computer science, the Universal Turing Ma-
chines were widely recognized as a model for any general-
purpose digital computers (Von Neumann computers). How-
ever, (Weng 2015) recently proved that the control of any
Turing Machine is an FA. The main idea in the proof (Weng
2015) was to allow each state in FA to include also actions
— write a symbol onto the TM tape and move the read-write
head of the TM tape. Thus, learning any FA is sufficient
for any Universal Turing Machines and sufficient for gen-
eral purposes.

Below, we bridge the above gap in AI. We enable DN to
do abstraction but without a human in the loop using sym-
bolic representations.

We consider the ”skull” to be the boundary of DN (brain).
Inside the skull is “internal” and outside the skull is “exter-
nal”. Running at discrete times t = 0, 1, 2, 3, 4, ..., the sen-
sory area X of DN takes input patterns x and the muscles
area Z of DN takes state pattern z. State/action z is taught
by the environment but very often self-supervised.

To bridge the above gap mathematically, we define non-
monolithic vectors x and z that correspond to symbols σ and
q, respectively.

However, the new notation here is that by a nonmonolithic
vector v that corresponds to a symbol a, we mean that the
vector v is contaminated, partial, and cluttered in represent-
ing the monolithic symbol a. Therefore, in all the notation
below, it is essential for the corresponding neural network
to automatically attend only the relevant and partial parts of
components among the cluttered vector v and to effectively
deal with the contamination and the partial nature. Unsu-
pervised clusters of the Lobe Component Analysis (LCA)
(Weng and Luciw 2009) with different receptive fields and

different weight patterns are necessary to provide candidates
or competitors for attention (Weng 2015).

The hidden Y area takes input from vector (z,x) to pro-
duce an internal response vector y which represents the best
match of (z,x) with one of many internally stored patterns
of (z,x):

The winner-take-all learning rule, which is highly nonlin-
ear and simulates parallel lateral inhibition in the internal
(hidden) area Y of DN is sufficient to prove in (Weng 2015)
that a DN that has sufficient hidden neurons learns any Tur-
ing Machine (TM) perfectly, immediately, and error-free.

The n neurons in Y give a response vector y =
(y1, y2, ...yn) of n neurons in which only the best-matched
neuron fires at value 1 and all other neurons do not fire giv-
ing value 0:

yj =

{
1 if j = argmax

1≤i≤n
{f(ti, z,bi,x)}

0 otherwise
j = 1, 2, ...n,

(2)
where f is a function that measures the similarity between
the top-down weight vector ti and the top-down input vec-
tor z as well as the similarity between the bottom-up weight
vector bi and the bottom-up input vector x. The value of
similarity is the inner product of their length-normalized ver-
sions (Weng 2015). Corresponding to FA, both the top-down
weight and the bottom-up weight must match well for f to
give a high value as inner product.

The response vector y in the hidden Y area is then used
by Z and X areas to predict the next z and x respectively in
discrete time: [

z
x

]
→ y→

[
z′

x′

]
(3)

where → denotes the update on the left side using the left
side as input. The first→ above is highly nonlinear because
of the top-1 competition so that only one Y neuron fires (i.e.,
exactly one component in binary y is 1). The second→ con-
sists of simply links from the single firing Y neurons to all
firing neurons on the right side. (Weng 2015) has shown that
each weight of the firing post-synaptic Z neuron in z′ in-
crementally accumulates the probability for the Z neuron
to fire, conditioned on its firing, supervised by the external
teacher or self-taught during autonomous practice. The same
is true for predicting components in x′.

As Eq. (3) is independent of task and independent of
modality, it applies to any practical task and any modal-
ity. Furthermore, it is able to integrate and share tasks and
modalities. It can also transfer task-to-task and modality-to-
modality skills.

Like the transition function of the FA in Eq. (1), each pre-
diction of z′ in Eq. (3) is called a transition. but now in real-
valued vector, without any symbols. The same y can also be
used to predict the binary (or real-valued) x′ ∈ X in Eq. (3).
The quality of prediction of (z′,x′) depends on how state z
abstracts the external world sensed by x. The more mature
the DN is in its “lifetime”’ learning, the better its predic-
tions. In the following, we use two paragraphs to explain
each arrow.



Here, we would like to give a top-level mathematical ideas
of the theory but the rigorous proof is available in (Weng
2015). There are two arrows in Eq. (3). First, from sensory
input x and motor state z to hidden response y. Second,
from the hidden response y to predict the state z and input
x. Although these two arrows compute in parallel without
waiting for the other, Eq. (3) presents them in serial just to
facilitate our understanding.

The first arrow in Eq. (3): When k ≥ 1 in top-k compe-
tition in the hidden area Y , we have a committee of k > 1
members who cast votes, giving relatively more reliable vot-
ing results if the committee members are all experts in this
(z,x) case. In other words, if Y have few neurons, k > 1
is not a good choice. Now, consider k = 1 in top-k compe-
tition, namely only one best-matched member in the voting
committee who is voting. All Y neurons compete by match-
ing their weights to match the state-input vector pair: (z,x).
In other words, in the high-dimensional space of (z,x), we
have many Y neurons as unsupervised clusters learned from
incremental clustering from a huge number (potentially un-
bounded) of observed samples. The firing Y neuron’s weight
vector is the nearest neighbor of the current (z,x), among
many other Y neurons. When the winner Y neuron fires at
value 1, a very important abstraction has taken place: From
the highly distributed representation in the form of (z,x)
into a highly concentrated representation in the form of a
single value 1 of the winner Y neuron. The k > 1 commit-
tee case is similar, where abstraction is concentrated on a
relatively small k number of voting members.

The second arrow in Eq. (3): We discuss the prediction
for the state vector z only, as the prediction for the input
vector x is similar. The prediction is for not only the vector
z that corresponds to a symbol q′ in Eq. (1), but the result
gives slightly imperfect new vectors that are similar but not
the same! Namely, emergence of new actions that are not
possible by using only a static set of handcrafted symbols!
Each firing neuron in z′, regardless it is supervised by the
teacher to fire or the agent self-explores to fire, “wakes up”
and starts to update its weights for y. Other non-firing neu-
rons still “sleep” and do not update their weights. The incre-
mental update of LCA (Weng and Luciw 2009) amounts to
incremental computation of the probability of each firing Y
neuron conditioned for this firing Z neuron! Beautiful math.

Furthermore, the above vector formalization in Eq. (3) is
simple but very powerful in practice. The pattern in Z can
represent the binary pattern of any abstract concept — con-
text, state, muscles, action, intent, object type, object group,
object relation. However, as far as DN is concerned, they
mean the same— a firing pattern of the Z area!

Namely, unified numerical processing-and-prediction in
DN amounts to any abstract concepts above. In symbolic
representations, it is a human to handcraft every abstract
concept as a symbol; but DN does not have a human in the
“skull”. it simply learns, processes, and generates vectors. In
the eyes of a human outside the “skull”, the DN gets smarter
and smarter.

Consider learning. Suppose human society together with
mother nature as a teacher is a huge and complex TM, in-
cluding a Universal Turing Machine. Because its control is

Eye

Mouth

Loc.

Group

Type

Figure 1: The distributed memory and responses inside a DN
that has learned a concept hierarchy — the lower “location”
concept (blue) and “type” concept(brown); and the higher
“group” concept (purple) .

an FA, represented by a huge FA transition table having r
rows and c columns. At each time t, t = 1, 2, ..., only the
winner Y neuron fires at response value 1 and incrementally
updates its weight vector (zi,xi) as the vector average of at-
tended part of (z,x). This is called the incremental Hebbian
learning rule. Then, the i-th Y neuron memorizes perfectly
the i-th distinct input pair (z,x) observed in life, because
the teacher TM has no errors. When the teacher has errors
the DN is optimal in the sense of maximum likelihood, as
proved in (Weng 2015).

The Z area was taught the next (binary) response vector
z′ using the same incremental Hebbian learning rule.

Suppose there are at most rc transitions in TM. The FA
needs at most rc hidden neurons to perfectly learns the TM.
Because a universal TM is a TM, a DN with sufficient hidden
neurons can learn any universal TM perfectly, immediately
and error-free.

Because any universal TM is a general purpose computer,
so is the corresponding DN. However, DN is emergent (i.e.,
skull closed) by automatically learning from the real physi-
cal world. In contrast, a universal TM is human handcrafted.
Therefore, we have established in theory that a DN can au-
tomatically learn from the real physical world to gradually
become a general purpose machine that auto-programs.

Fig. 1 fives a schematic illustration about how the brain or
DN learned higher concept “group” from rules that are based
on lower invariant concepts — type and location. Each in-
put x is concrete, but motor z becomes increasingly abstract
through learning. Potentially such DNs are capable of auto-
programming for general purposes after they become mature
through “lifetime” activities.

Cross-modality transfer is one of the goals of our future



experimental studies using the same DN learning engine.
The information in the motor area Z can be contributed
from different inputs from X or different modalities from
X . For example, visual “apple” in X1 and auditory “apple”
in X2 all are bi-directionally linked with spoken “apple” in
Z. Thus, visual “apple” in X1 invokes spoken “apple” in Z
which then invokes auditory “apple” in X2, or vice versa.
The WWN-1 embodiment of DN has demonstrated such
bidirectional predictions but not yet cross-modality transfer.

Experiments
In AIML Contest 2016, we let a DN to take one of three sen-
sory modalities while it learns in “lifetime”: We let the x be
the image at each time instance and z be landmark location-
and-type and action of navigation, the DN became a vision-
guided navigation machine. We let x be the frame of firing
pattern of hair cells in cochlea at each time instance and z
be the dense stages and the sparse type of sounds, the DN
became a auditory-recognizer machine. We let x be a time
frame of vector of word (either English or French) and z be
the language kind and meaning of each sentence context, the
DN became a bilingual language understander.

Learning vision based autonomous navigation: The vi-
sion task is autonomous navigation on the MSU campus,
where GPS signals are often missing, not accurate enough,
and will lead to failures without a sufficient visual capability
using a single video camera. Fig. 2 provides an overview of
the extensiveness of the training, regular training, and blind-
folded testing sessions. 1 The inputs to the DN were from
the same mobile phone that performs computation. They in-
clude the current image from the monocular camera, the cur-
rent desirable direction from the Google Map API and the
Google Directions API. If the teacher imposes the state in
Z, this is treated as the supervised state. Otherwise, the DN
outputs its predicted state from Z. The DN learned to attend
critical visual information in the current image (e.g., scene
type, road features, landmarks, and obstacles) depending on
the context of desired direction and the context state. Each
state from DN includes heading direction or stop, the lo-
cation of the attention, and the type of object to be detected
(which detects a landmark), and the scale of attention (global
or local), all represented as binary patterns. None is a sym-
bol. The dataset used in the AIML Contest contained 2109
gray-scale images of 72 × 128 pixels that have been con-
verted down to 38 × 38 pixels for the DN to learn and test.
The impressive performance will be reported elsewhere due
to the limited space.

Audition from a “lifelong” cochlear sequence: For the
audition modality, each input image to X is the pattern
that simulates the output from an array of hair cells in the
cochlea. We model the cochlea in the following way. The
cells in the base of the cochlea correspond to filters with a
high pass band. The cells in the top correspond to filters with
a low pass band. At the same height, cells have different
phase shifts. Potentially, such a cochlear model could deal
with music and other natural sound, more general than the

1Youtube video at https://www.youtube.com/
watch?v=4cc9xk0TaxE.

popular Mel Frequency Cepstral Coefficients (MFCCs) that
are mainly for human speech processing. The performance
will be reported elsewhere due to the limited space.

Natural languages from a “lifelong” word sequence:
As far as we know, this seems to be the first work that deals
with language acquisition in a bilingual environment, largely
because the DN learns directly from emergent patterns, both
in word input and in action input (supervision), instead of
static symbols.

The input to X is a 12-bit binary pattern, each represents
a word, which potentially can represent 212 words using
binary patterns. The system was taught 1,862 English and
French sentences from (Scriven, Amiot-Cadey, and Collins
2011), using 2, 338 unique words (case sensitive). As an ex-
ample of the sentences: English: “Christine used to wait for
me every evening at the exit.” French: “Christine m’attendait
tours les soirs à la sortie.”

The Z area was taught two concepts: language type (En-
glish, French, and language neutral, e.g., a number or name)
represented by 3 neurons (top-1 firing), and the language-
independent meanings as meaning states. The performance
will be discussed elsewhere due to the space limit.

AOS
Based on the theories, methods, devices, and experiments
explained above, this section presents a new kind of OS —
Auto-Programming Operating Systems (AOS).

Why AOS? The purposes of AOS are twofold:
First, make strong AI. Weak AI is AI that is for a narrowly

defined task. Strong AI is AI that is meant to learn and per-
form many different tasks in the natural world. Weak AI is
not only limited in the scope of the task that the machine
executes, but also brittle if the task is a real-world task, such
as self-driving in the natural world.

Second, make machines work and learn more like a hu-
man. For example, suppose one prints a file that includes 10
pages. A traditional printer is not able to abort the printing
task once the task has been started but the toner is run out
in the middle, or the long file being printed turned out to be
a wrong one. A human can change his goal in real time on-
the-fly according to a new situation, but a traditional printer
cannot. The AOS abstracts all sensors and effectors as real-
time sensors and effectors, so that the DN can change the
task at hand within a fraction of second. Changing the goal
on the fly is not only important for aborting a task, but also
for adjusting sub-goals within a task. For example, how to
adjust the pitch, volume, duration and other sound charac-
teristics depending on how the machine likes what it hears
from its singing.

By definition, an agent is something that senses and acts.
Inside the agent are three types of resources: sensors, effec-
tors, and computational resources. For convenience of the
three-type classification, anything that is not sensor or effec-
tor is considered computational resources. Therefore, e.g.,
batteries can be considered part of computational resources.

Because AOS is for auto-programming for tasks without a
static scope, we must not assume any task concept. However,
AOS should abstract the agent body so that a DN can plug
into any computer and start to “live” and learn.

https://www.youtube.com/watch?v=4cc9xk0TaxE
https://www.youtube.com/watch?v=4cc9xk0TaxE


training data collection route
blind folded testing route
regular testing route

sunny weather

sunny weather

cloudy weather

cloudy weather

sunny weather

cloudy weather

sunny weather

sunny weather

sunny weather
cloudy weather

sunny weather

cloudy weather

Figure 2: Training, regular testing, and blind-folded testing sessions conducted on the campus of Michigan State University
(MSU), under different times of day and different natural lighting conditions with unpredictable shadows from trees, light posts
and buildings. The DN automatically learned how to detecting reliable features (e.g., landmarks) while disregard unreliable
features (e.g., shadows) based on statistics represented by neuronal weights. Disjoint testing sessions were conducted along
paths that the machine has not learned.

The new method and device of AOS deal with the follow-
ing issues:

1. Convert every input device to a unified sensor with a set
of parameters (e.g., the number of pixels).

2. Convert every output device to a unified effector with a
set of parameters (e.g., the number of possible values).

3. Convert all computational resources to unified neurons
and their connections.

4. Provide a mapping for each change in the physical sen-
sors, effectors, and computational resource in the body so
that the trained DN can continue to learn on the new body.

Body changes may take place at different lifetimes of a
(machine) brain — the Developmental Network. For exam-
ple, a machine brain successfully trained on a factory body
is copied into many identical machine brains (DNs) each of
which is then uploaded to a different machine body by a con-
sumer. A version 1 body is upgraded to version 2 body, and
therefore, the machine brain must run on the new body.

Like a human being, the learning of a strong AI system
must go through a process of learning many tasks — from
simple to complex — so that skills learned for simple tasks
assist the learning for complex tasks. For example, learning

to stand steady can assist learning walking without falling.
Learning walking is useful for learning running. Sometimes,
the skills learned for complex tasks can also assist the learn-
ing of simpler tasks. For instance, in mathematics, skills
in learning derivatives can also assist learning limits (e.g.,
L’Hospital’s Rule).

Traditional OS An operating system (OS) is system soft-
ware that manages computer hardware and software re-
sources and provides common services for computer pro-
grams. In the context of operating systems, input devices and
output devices are called peripherals. Traditionally, an op-
erating system (e.g., Unix, DOS, Mac OS, Windows, iOS,
Android) treat each peripheral differently using a different
driver.

A traditional OS treats a keyboard and a camera using two
very different drivers because the keyboard and the camera
are two very different input devices.

A traditional OS treats a printer and a speaker (or other
effectors such as one that controls the steering wheel of a
car) using very different drivers because the printer and the
speaker are two very different output devices.

A traditional OS treats computer resources very differ-
ently, such as memory, disk, CPU and GPU.

AOS The main purpose of AOS is to provide a unified



standard for any Developmental Network (DN) that auto-
programs for general purposes. Although each computer has
different hardware and OS, AOS abstracts all hardware and
OS into a single standard in order for any AOS-complaint
DN to plug in and start learning as a GENISAMA TM.

Shown in Fig. 3, an AOS is built on top of a conven-
tional OS such as Unix, Android, iOS, and Windows which
provides some basic functions about the resources, such as
recording, playing back, programming, and search.

Sensors EffectorsComputational
resources

OS

AOS

DN

Extrabody environment

Figure 3: The relation among DN, AOS, traditional OS,
hardware (computational resources, sensors and effectors),
and the physical extra-body environment. The body includes
DN, AOS, traditional OS, and hardware.

The theories, methods and experiments above have given
detailed examples about how an AOS converts three types of
resources — sensors, effectors, and computational resources
— into unified sensors, unified effectors, and unified neu-
rons, respectively. Because there is an open-ended variety of
physical sensors, effectors, and computational resources, it
is desirable and sufficient to give the following principles of
AOS.

AOS unified sensors: AOS provides AOS standards and
sample methods to unify all current and future sensors.
Examples of sensors include: video camera (real-time im-
age sensors), microphones (real-time sound sensors), touch
screens (real-time touch sensors), lasers, radars, sonars (real-
time distance sensors), keyboards (real-time finger-touch
sensors for body symbols).

Each instance of connected sensor provides an abstract
sensor, called AOS body sensor. At each sampled time, each
sensor provides a body-sensed pattern, represented as a nu-
merical image (typically 2D for a gray-tone camera or 3D
for a color camera) where each pixel corresponds to a body-
location of a receptor in the sensor and the intensity of each
pixel corresponds to the firing value of that receptor. Two
cameras are treated as two sensors whose field of views have
partial overlap in the 3D physical world. Pixels in the binoc-
ular areas are considerably correlated between the left cam-
era and right camera. It is desirable for DN to automatically
form connections in a coarse-to-fine manner through life-
time using synaptic maintenance so that neurons automati-
cally find their locations in the artificial retinas and whether
it is a binocular neuron, a left-monocular neuron, or a right-
monocular neuron. Other differences between the DN sam-
pling rate and the sensor sampling rate should be treated the
same way by AOS.

Because the update rate of a DN (e.g., 30Hz) is consid-
erably lower than the sampling rate of a microphone (e.g.,
44,000Hz), a sampled body-sensed image from a micro-
phone integrates the between-frame (e.g., 33ms) spatiotem-
poral information of all hair cells in a cochlea. Namely, an
AOS image from a microphone and an AOS image from a
camera are basically the same in data format, called AOS
sensory image: e.g., both are images provided at 30 times per
second. The major differences between them are the number
of pixels and the nature of the physical properties (i.e., sound
vs. light).

AOS unified effectors: AOS provides AOS standards and
sample methods to unify all current and future sensors. The
data format of an AOS effector is also an image, called AOS
effector image.

Just like AOS sensors are body sensors, all AOS effec-
tors are body effectors. By body effector, we mean that each
component in the pattern of an AOS effector corresponds to
a body muscle on the body, instead of value of a concept
in the extra-body world. The purpose of this requirement is
to avoid handcrafted extra-body concept in the representa-
tion of AOS effectors. However, we allow the environment
to teach any patterns of world concepts through sensors and
effectors. For example, we allow the environment to teach
a component in the steering wheel effector that corresponds
to a particular speed value or a particular angle value of the
steering wheel (i.e., simulating the arm that turns the steer-
ing wheel).

The sampling rate difference between DN and an effector
(e.g., a loud speaker) is treated in a way similar to sensors.
The image generated for a speaker contains information to
drive the speaker for the inter-frame time (e.g., 33ms from
a 30Hz DN). AOS body speaker is not a conventional static
text-to-speech synthesizer. Because it simulates muscles, the
DN can generate different sounds (e.g., singing) according
to its spontaneous intents or goals.

AOS unified computational resources — neurons:
AOS provides AOS standards and sample methods to unify
all current and future computational resources. The basis of
the standards and sample methods are the architecture of
DNs, explained above. All computational resources serve
neurons as the basic computing elements. Each neuron re-
quires memory (registers, RAM, disk, etc.) to store its dy-
namic weights and its dynamic connections with other neu-
rons. Each neuron also requires memory to store its dynamic
age and growth rates. Each neuron requires computing re-
sources (CPU, GPU, FPGA, etc.) to carry out its computa-
tion for its current response and its current values of neural
transmitters through excitatory neural transmitter, inhibitory
neural transmitter, 5-HT, DA, ACh, NE (see (Weng 2012)).

The memory hierarchy (e.g., the register-RAM-disk hi-
erarchy) in a traditional OS meets changes here because
it is possible that every weight of all neurons would be
used to compute the real-time neuronal competition, regard-
less whether the neuron itself fire after the computation of
competition. Such brain-like parallel computations require a
high speed of computation and data transmission by hard-
ware (e.g., CPU, GPU, FPGA, dedicated neuronal circuits,
and data bus) and a large amount of fast memory.



Hardware changes: Let us consider difference of hard-
ware. Such a difference may occur between a training ma-
chine in the robot school run by a factory and a customer
machine. This can be treated basically the same as a body
change within the robot school: The partially learned DN is
downloaded from the old body, recompiled with the AOS on
the new body, and continues to run (i.e., learn and perform)
the old DN on the new body, in a way similar to a human
who changed to a new pair of eye glasses. A minimal degra-
dation of performance may be observed like the human who
got a new pair of eye glasses.

The hardware changes modeled by AOS include resolu-
tion change (increase or decrease), a range change (increase
or decrease), a depth change (e.g., from black-and-white to
color), or a combination thereof, from the prior pattern to a
new pattern in the AOS sensory image or the AOS effector
image. AOS specifies a mapping standard and sample meth-
ods between the old pattern to the new pattern:

Uniform sensors and effectors: For a sensor, the density
of receptors is uniform across the sensing array. For an ef-
fector, the muscle neurons are uniform. There is no need to
calibrate the new camera, because the DN is able to adapt,
like how human eyes learn to adapt to a new pair of glasses.
Suppose that the new pattern has doubled the number of pix-
els, in both row and column, from the old pattern. The AOS
handles this case by initially connecting one of every 2 × 2
pixels in the new pattern to the corresponding pixel in the
old pattern. The growth of Y neurons in DN will gradu-
ally spread its neurons over the entire new pattern. A similar
principle applies if the new pattern reduced the resolution:
Linearly spread the pixels in the new camera evenly across
the old input pattern by skipping an old connection every n
pixels, where n = 2 if the resolution is reduced by 2 in the
direction from the old pattern to new pattern.

Nonlinear sensors and effectors: The sensing array of
the sensor may have non-uniform receptors (e.g.. like the
retina where the density of cone and rod receptors in the
fovea is higher than the periphery). For an effector, the mus-
cle neurons are non-uniform. Like the uniform case, there is
no need to calibrate. Simply connect pixels of new pattern
uniformly across the old pattern. The DN will automatically
assign neuronal resource according to the density distribu-
tion in the new pattern.

Change in computational resources: AOS distributes
the additional resource, or strip the resource, uniformly
across the entire Y zone. DN will automatically blend in
new neurons or fill the holes left out by deleted neurons.

Conclusions
Strong AI goals seem no longer hopeless, based on the the-
oretical brief here and the DN applicability to vision, au-
dition, and natural language understanding in AIML Con-
test 2016. The AOS provides a new kind of OS that enables
auto-programming for general purposes, hopefully greatly
reducing the cost of the development and brittleness of AI
applications.

Contributions: JW: major original ideas, theories, and al-
gorithms; ZZ: vision; XW: audition; JC: natural languages;
SZ: AOS; QG and XFW: knowledge hierarchy and Fig. 1.

Acknowledgements: The authors would like to thank Z.
Ji, M. Luciw, M. Solgi, X Song, Y. Wang, W. Zhang, Q.
Guo, and Y. Wu for their contributions to the experimental
embodiments of DN: WWN-1 through WWN-9.

References
[Carpenter, Grossberg, and Rosen 1991] Carpenter, G.;
Grossberg, S.; and Rosen, D. B. 1991. Fuzzy art: Fast
stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks 4:759–771.

[Jordan and Mitchell 2015] Jordan, M. I., and Mitchell,
T. M. 2015. Machine learning: Trends, perspectives, and
prospects. Science 349:255–260.

[LeCun, Bengio, and Hinton 2015] LeCun, Y.; Bengio, L.;
and Hinton, G. 2015. Deep learning. Nature 521:436–444.

[Schmidhuber 2015] Schmidhuber, J. 2015. Deep learning in
neural networks: An overview. Neural Networks 61:85–117.

[Scriven, Amiot-Cadey, and Collins 2011] Scriven, R.;
Amiot-Cadey, G.; and Collins. 2011. Collins French
grammar. Glasgow: HarperCollins.

[Siegelmann 1995] Siegelmann, H. T. 1995. Computation
beyond the Turing limit. Science 286:545–548.

[Sun, Slusarz, and Terry 2005] Sun, R.; Slusarz, P.; and
Terry, C. 2005. The interaction of the explicit and the im-
plicit in skill learning: A dual-process approach. Psycholog-
ical Review 112(1):59–192.

[VonMelchner, Pallas, and Sur 2000] VonMelchner, L.; Pal-
las, S. L.; and Sur, M. 2000. Visual behaviour mediated by
retinal projections directed to the auditory pathway. Nature
404:871–876.

[Voss 2013] Voss, P. 2013. Sensitive and critical periods in
visual sensory deprivation. Frontiers in Psychology 4:664.
doi: 10.3389/fpsyg.2013.00664.

[Weng, Ahuja, and Huang 1997] Weng, J.; Ahuja, N.; and
Huang, T. S. 1997. Learning recognition and segmentation
using the Cresceptron. International Journal of Computer
Vision 25(2):109–143.

[Weng and Luciw 2009] Weng, J., and Luciw, M. 2009.
Dually optimal neuronal layers: Lobe component analysis.
IEEE Trans. Autonomous Mental Development 1(1):68–85.

[Weng et al. 2001] Weng, J.; McClelland, J.; Pentland, A.;
Sporns, O.; Stockman, I.; Sur, M.; and Thelen, E. 2001. Au-
tonomous mental development by robots and animals. Sci-
ence 291(5504):599–600.

[Weng 2012] Weng, J. 2012. Natural and Artificial Intelli-
gence: Introduction to Computational Brain-Mind. Okemos,
Michigan: BMI Press.

[Weng 2015] Weng, J. 2015. Brain as an emergent finite au-
tomaton: A theory and three theorems. International Journal
of Intelligent Science 5(2):112–131. received Nov. 3, 2014
and accepted by Dec. 5, 2014.

[Wiesel and Hubel 1965] Wiesel, T. N., and Hubel, D. H.
1965. Comparison of the effects of unilateral and bilateral
eye closure on cortical unit responses in kittens. Journal of
Neurophysiology 28:1029–1040.


	Introduction
	Theory Brief
	Experiments
	AOS
	Conclusions

