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Abstract—It has been shown that a Developmental Network
(DN) can learn any Finite Automaton (FA) [29] but FA is not
a general purpose automaton by itself. This theoretical paper
presents that the controller of any Turing Machine (TM) is
equivalent to an FA. It further models a motivation-free brain —
excluding motivation e.g., emotions — as a TM inside a grounded
DN — DN with the real world. Unlike a traditional TM, the
TM-in-DN uses natural encoding of input and output and uses
emergent internal representations. In Artificial Intelligence (AI)
there are two major schools, symbolism and connectionism. The
theoretical result here implies that the connectionist school is at
least as powerful as the symbolic school also in terms of the
general-purpose nature of TM. Furthermore, any TM simulated
by the DN is grounded and uses natural encoding so that the
DN autonomously learns any TM directly from natural world
without a need for a human to encode its input and output. This
opens the door for the DN to fully autonomously learn any TM,
from a human teacher, reading a book, or real world events.
The motivated version of DN [31] further enables a DN to go
beyond action-supervised learning — so as to learn based on
pain-avoidance, pleasure seeking, and novelty seeking [31].

I. INTRODUCTION

Our computational theory [31] of brain and mind includes
two major parts rooted in the rich literature about biological
brains [15], [7]: (A) dynamically emerging, motivation-free
circuits and functions, and (B) motivation based on such
circuits and functions.

The computation in the former (A) is carried out by target-
precise neuron-to-neuron signal transmissions. Weng & Luciw
2012 [37] and Weng et al. 2013 [38] presented a computational
theory for such brain circuits to process information, spatial
and temporal, respectively, using their distributed, emergent,
and non-symbolic representations. As reviewed in those two
articles, such brain circuits are also fundamentally different
from many existing neural networks cited therein — the brain
circuits are not only locally recurrent as many neural networks,
but also globally recurrent in the sense that they all use motor
as input concepts. As explained in Weng & Luciw [39] the
brain motors (or actions) correspond to all possible concepts
that a human can learn and express, from conception, through
prenatal life, birth, childhood, infancy, and adulthood — such
as location, type, scale, temporal context, goal, sub-goal, intent,
purpose, price, ways to use, and so on. These concepts are used
by the brain circuits as states, like states in a Finite Automaton
(FA) [12], but such an FA is emergent and non-symbolic to be
explained below.

The computation in the latter (B) is based on target-
imprecise diffusion of neural transmitters that diffuse across

brain tissue. Weng et al. 2013 [41] proposed a model for
how reinforcement learning is carried out in such emergent
brain circuits through two types of transmitter systems —
serotonin and dopamine. Wang et al. 2011 [27] presented
a model about how individual neurons use two other types
of transmitter systems — acetylcholine and norepinephrine
— to automatically estimate uncertainty and novelty so that
each neuron can decide where it gets inputs from. These four
types of neural transmitter systems — serotonin, dopamine,
acetylcholine and norepinephrine — along with other neural
transmitters but seemingly relatively less important than these
four types [16], amount to what we know as motivation.
Various emotions are special cases of motivation [15], [7].

To be focused, this paper will not further discuss the mo-
tivation part of a biological brain and will instead concentrate
on the former — (A) the basic brain circuits and functions. In
other words, the theory below models any emotion-free brain.

This theory here does not claim that the TM capable brain
model is indeed complete for an emotion-free brain. Most
likely, the opposite is true because there is no widely accepted
and rigorous definition of a natural phenomenon such as a brain
and, therefore, there is always some limitation for any theory to
explain a natural phenomenon. As such, as any theory can only
approximate a natural phenomenon but can never exhaust such
an approximation. The Newtonian physics is a good example
because it is refined by the relativity theory.

In the following Section II, we discuss the relevant impor-
tant concepts and review the prior studies. Section III presents
DN. We extend FA as a temporal machine in Section IV
so as to pave the way toward our new theory of Emergent
TM which is presented in Section V. Section VI briefly
discusses experiments of DN including motived DNs such
as pain avoidance and pleasure seeking. Section VII provides
concluding remarks and discussion.

II. RELEVANT STUDIES AND CONCEPTS

All computational networks fall into two categories, Sym-
bolic Networks (SNs) and Emergent Networks. The former
category uses symbolic representations and the latter uses
emergent representations. See the review for symbolic models
and emergent models in Weng 2012 [32] which tried to clarify
some common misconceptions on representations.

The class of SN [23] includes Finite Automata (FA),
Markov Chains, Markov Models, Hidden Markov Models
(HMM), Partially Observable Markov Decision Processes
(POMDP), Belief Networks, Graphical Models, and all other
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Fig. 1. Comparison between a symbolic FA (or SN) and an emergent
DN. (a) Given a task, an FA (or SN), symbolic, handcrafted by
the human programmer using a static symbol set. (b) A DN, which
incrementally learns the FA but takes sensory images directly and
produces motor images directly. Without given any task, a human
designs the general-purpose Developmental Program (DP) which
resides in the DN as a functional equivalent of the “genome” that
regulates the development — fully autonomous inside the DN.

networks that use at least some symbolic representations. The
HMM and other probability-based models in the above list
are symbolic because they add probability to the symbolic FA
basis and therefore the basic nature of their representations are
still symbolic — adding probability does not change the nature
of symbolic representation. We will use FA as an example for
SN because any SN includes FA as its basis.

The class of Emergent Network includes all neural net-
works that use exclusively emergent representations, such as
Feedforward Networks, Hopfield Networks, Boltzmann Ma-
chines, Restricted Boltzmann Machines, Liquid State Ma-
chines, Reservoir Computing, and the newer Developmental
Networks (DNs) [30]. However, traditional neural networks
are not as powerful and complete as DN, because they do not
have the logic of FA as explained in [30].

The major differences between a Symbolic Network (SN)
and a Developmental Network (DN) are illustrated in Fig. 1.

Marvin Minsky 1991 [19] and others correctly argued that
symbolic models are logical and clean, while connectionist
models are analogical and scruffy. Neural networks are called
emergent networks here but excluding networks that are not
emergent — symbolic or partially symbolic. Michael Jordan
2014 [8] correctly raised fundamental questions that many
researchers have not paid sufficient attention and effort to. The
logic capabilities of emergent networks, as a category, are still
unclear. This paper further addresses some fundamental issues
that Michael Jordan recently raised [8].

Computationally, feed-forward connections serve to feed
sensory features [21] to motor area for generating behaviors.
It has been reported that feed-backward connections can serve
as class supervision [10], attention [3], and storage of time
information.

The framework of Finite Automata (FA) plays a major role
in our theory about the brain. The work of Weng 2011 [30]

and 2013 [33] was not the first to relate a network with an
FA. Some researchers used neural networks to batch-compile
a special kind of FA as discussed below.

Frasconi et al. 1995 [5] used a feed-forward network to
explicitly compute the state transition function δ : Q×Σ 7→ Q
of an FA. Their network required (1) a special canonical
binary coding of the states so that the Hamming distance
is 1 between any source state q and any target state q′, (2)
an additional intermediate state is added if the source state q
and target state q′ are the same, (3) the entire state transition
function δ is known a priori so that their algorithm can
directly compute all the weights as a batch (i.e., compiled,
instead of learned incrementally). This compiled network uses
a layer of logic-AND nodes followed by a layer of logic-OR
nodes. Frasconi et al. 1996 proposed a radial basis function
as an alternative batch-compiled feed-forward network for the
above logic network [6] since a finite number of samples
is sufficient for completely characterizing the FA due to its
symbolic nature. Omlin & Giles 1996 [22] proposed a second-
order network for computing the state transition function of
a fully given FA. By 2nd order, the neuronal input contains
the sum of weighted multiplications (hence the 2nd order),
between individual state nodes and individual input nodes.
There does not seem to be known evidence that a biological
neuron uses such a product. The network Omlin & Giles 1996
is also statically “programmed” by a human programmer based
on a fully given FA. They positively contributed to neural
network studies.

Using a similar approach, other researchers used neural
networks to simulate a TM. Hyötyniemi 1996 proved that
his handcrafted recurrent network can compute a specially
encoded TM that although simple but functionally equivalent
to any TM. The simplicity of the TM implies that such network
techniques are probably not practically efficient.

As far as we know, the first naturally emergent Turing
Machine was proposed by Weng 2014 [34] in which an
emergent TM was defined in terms of the corresponding FA-
in-DN, based on the mathematically proved capability of a DN
to learn any large and complex FA. This paper focuses on this
kind of Emergent Turing Machines.

The work Graves et al. 2014 [9] is interesting as it men-
tioned Turing Machine while doing neural networks. They used
a neural network controller to perform copy into memory, sort-
ing, and associate recall from a memory [9] that corresponds
to a matrix of synaptic weights, as examples of operations
typical for TMs. Although they called their system “Neural
Turing Machine”, they have not established, or intended to
establish, that all their operations are sufficient for simulating
any TM. In addition, they regarded an attention process as
to read from and write to, selectively, some synapses of a
subset of neurons. This is different from attention studied in
neuroscience and psychology — attending natural objects in
cluttered scenes.

In addition to the similarity to Hopfield Network [13] and
LSTM [11] cited therein, Graves et al. 2014 [9] appeared to
have a series of mechanism similarities with DN 2011 [30]
along with DN embodiments Where-What Networks, WWN-
1 2008 [14] to WWN-7 2013 [43]. To facilitate understanding
their conceptual relation, let us see some of the similarities
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with correspondence of concepts: (1) The finite state machine
(i.e. FA) was mentioned once, but not explained, in [9] but
emergent FA in DN had been published in Weng 2011 [30]
and the proofs published as a conference paper 2013 [33],
and enriched in a journal paper 2014 [34]. (2) The N ×M
memory in [9] corresponds to, respectively, the synaptic weight
vectors of N neurons each of which has M input components
in [30]. (3) The similarity measure of [9, Eq.(6)] is the
same as that of [30, Eq.(1)]. The softmax in [9] appears to
correspond to the max operation in Cresceptron [35]. But
DN improved the max mechanism in Cresceptron: Max in
Cresceptron is replaced by the more general cross-feature local
top-k competition not restricted to the same feature in the
domain of the max operation since many features are not
relevant to the current context. In terms of shift in [9], we are
not aware of any evidence that the brain uses location-based
addressing in addition to content-based addressing.

In our Emergent TM, the TM tape becomes the real world,
not the memory matrix in [9]. In contrast to the error back-prop
learning, DN uses biologically plausible Hebbian learning.
From the proof for FA-in-DA [33], [34] and the presentation
of Emergent TM here, the mechanisms in the motivation-free
DN seem to be sufficient for any motivation-free TM.

The above FM and TM studies aimed at successfully com-
puting the transition function of FA or TM using a programmed
network and a special rigid encoding of input and output.
However, they have the following limitations.

1) Batch processing: They do not learn incrementally
— taking one image frame and action frame at a time
to update the system and discard the frame before
taking the next frame.

2) Special sensory encoding: the system requires a spe-
cial encoding for input that is necessary for network
to establish the mapping. They do not learn directly
from natural images from the real world (i.e., natural
images). Thus, learning is not autonomous because a
human must be in the loop of sensory encoding.

3) Special output/action encoding: the system requires
a special encoding for actions that is necessary for
network to establish the mapping. They do not learn
directly from natural actions from the real world (i.e.,
signals from robot actuators). Thus, learning is not
autonomous because a human must be in the loop of
output/action encoding.

4) Compiled internal representations: The term “com-
piled” means the programmer, as a task-understood
central controller, must use the meaning of the en-
coded input and output. The internal representations
are therefore not emergent because any autonomous
mergence of internal representations requires the ab-
sence of a task-understood central controller.

5) Non-developmental: Do not co-learn while a teacher
FA is operating. If FA operation represents real-time
operation of a parent, teacher, or real-world event,
do not imitate while such a teacher FA operates. This
also implies that the learning system is not able to im-
prove while it is already operating. Thus, earlier and
simpler learned skills are not used to learn newer and
more sophisticated skills while performing. Learning
autonomy is not done. Teaching for human level

performance is therefore so expensive that it appears
to be impossible.

Our DN aims at autonomous development , which implies
that every neuron in the biological brain must automatically
figure out its roles for its cell type in the brain [30] —
absence of any central controller. Handcrafted problem-specific
modules — human as a central controller — do not satisfy
this developmental requirement. In practice, such handcrafted
problem-specific modules greatly increase the cost of product
development and result in a brittle system in uncontrolled
natural settings.

As far as we know, the DN in Weng 2011 [30] was the first
general-purpose emergent FA in DN that have all the following
properties although some earlier neural networks have some of
these properties.

1) Incremental learning together with space and time
optimality in the sense of ML (maximum likelihood).
The system takes one-pair (x, z) of sensory pattern x
and motor pattern z at a time to update the network
and discard the pair immediately after.

2) Natural sensory input without special encoding.
E.g., each input frame can be a natural visual image
or touch image. Thus, sensory input is emergent,
emerging naturally from the real world.

3) Natural output/action without special encoding.
The output can directly drive natural effectors. It
also allows the motor area to have subareas where
each subarea represents either an abstract concept
(location, type, scale, etc.) or natural muscle actions
(e.g., driving a car or riding a bicycle), Thus, motor
input is emergent, emerging naturally from the real
world and the body.

4) Fully emergent representations. Not only the above
2) and 3) are emergent, but also the internal repre-
sentation of the huge brain Y .

5) Developmental. Earlier and simpler learned skills are
not used to learn newer and more sophisticated skills
while performing. The learning inside the network is
fully autonomous from the inception time, hopefully
relieving human programmers from handcrafting in-
ternal representations and serve as the central con-
troller.

6) A unified area function that does not need inter-
active computation at each time and does not have
local minima in its high dimensional and nonlinear
optimization. Because of the use of Voronoi regions
and top-k competition, the formulation of complex
nonlinear optimization leads to the computationl of
an incremental mean which is a linear problem.

7) ML optimization at each discrete time, conditioned
on the limited computational source (i.e., number
of neurons) and limited learning experience (i.e.,
agent age and the limited intelligence of the teaching
environment).

Explained in Weng 2012 [31], the DN model is inspired
by biological brains, especially brain anatomy (e.g., [4], [24])
and brain physiological experiments (e.g., [3], [1]). But we
will use computational language in the following material, so
that the material is understandable by an analytical reader.
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Fig. 2. Conceptual correspondence between an Finite Automaton (FA)
with the corresponding DN. (a) An FA, handcrafted and static. (b)
A corresponding DN that simulates the FA. It was taught to produce
the same input-output relations as the FA in (a). A symbol (e.g., z2)
in (a) corresponds to an image (e.g., (z1, z2, ..., z4) = (0, 1, 0, 0)) in
(b).

The FA-based brain theory in [30] whose full proofs were
available publically in [33]:

Theorem 1 states that for any FA that operates in real time,
there is an emergent DN that learns the FA incrementally. It
observes one state-and-input pair from the FA at a time, learns
immediately and becomes error-free for all the FA transitions
that it has learned, regardless how many times a transition has
been observed — one is sufficient but more results in better
optimality in the real world. The DN is equivalent to the part
of FA that correspond to all transitions that have demonstrated
so far.

Theorem 2 establishes that if the FA-learned DN is frozen
— computing responses only but not updating its adaptive
parts, the frozen DN is optimal in the sense of maximum
likelihood when it takes inputs from infinitely many possible
cases in the world.

Theorem 3 asserts that the FA-learned DN, if it is allowed
to continue to learn from infinitely many possible cases in the
world, is optimal in the sense of maximum likelihood.

III. ALGORITHM OF DN

The DP self-programs the logic of the world into a DN
based on DN experiences in its physical activities. The DP
is small but DN is typically huge. A DN has its area Y as a
“bridge” for its two banks, X and Z, as illustrated in Fig. 2(b).

Biologically, a DP algorithm models the collective effects
of some genome properties of the cells of the nervous system
— neurons and other types of cells in the nervous system [2],
[15], [7]. Thus, in nature, the DP is a result of evolution across
many generations of a species. The DP seems to be a more
systematic and direct way to understand natural intelligence

than studying the concrete behavior responses from the brain
of a child or adult.

In artificial intelligence, a DP algorithm is the result of hu-
man understanding of the development of natural intelligence
followed by a human DP design based such understanding.
This approach, known as developmental approach [40], [31],
short-cuts the long and expensive process of cross-generation
evolution.

Some parameters of DP (e.g., the number of cells in Y )
could be experimentally selected by a genetic algorithm, but
the DP as a whole seems to be extremely expensive for any
artificial genetic algorithm to reach without handcrafting (e.g.,
see the handcrafted area function below).

Human design of DP algorithm [40] seems to be a more
practical way to reach human-like mental capabilities and
human-level performance in robots and computers for two
main reasons: (1) Fully automatic development of intelligence
(i.e., task-nonspecific and fully automatic learning) is the ap-
proach that the natural intelligence takes and has demonstrated
successful. (2) The design of the DP algorithm is a clean task,
in contrast to traditional AI — modeling intelligence itself —
which is a muddy task [28], [31].

The quality in a human-designed DP, when the DP is
widely used in the future, greatly affects all the capabilities
in the developmental robots and computers that use the DP.

In the DN, if Y is meant for modeling the entire brain,
then X consists of all receptors and Z consists of all effectors
— muscle neurons and glands. Additionally, the Y area of the
DP can also model any Brodmann area in the brain and if so,
the X and Z correspond to, respectively, the bottom-up areas
and top-down areas of the Brodmann area. From the analysis
below, we can also see that the Y area of the DN can model
any closely related set of neurons — Brodmann area, a subset,
or a superset.

The most basic function of the area Y seems to be
prediction — predict the signals in its two vast banks X and
Z through space and time.

Algorithm 1 (DP): Input areas: X and Z. Output areas: X
and Z. The dimension and representation of X and Y areas
are hand designed based on the sensors and effectors of the
species (or from evolution in biology). Y is the skull-closed
(inside the brain), not directly accessible by the outside.

(A) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector r, where
V contains all the synaptic weight vectors and G stores all the
neuronal ages. For example, use the generative DN method
discussed below.

(B) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:

1) Every area A performs mitosis-equivalent if it is
needed, using its bottom-up and top-down inputs b
and t, respectively.

2) Every area A computes its area function f , described
below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector and N and N ′ are the
adaptive parts of the area defined above, before and
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after the area update, respectively. Note that r is not
part of the domain of f because f is the model for any
area A, not just for an individual neuron of A. Thus,
f does not use iterations, efficiently approximating
lateral inhibitions and internal excitations.

3) For every area A in {X,Y, Z}, A replaces: N ← N ′

and r← r′.

The DN must update at least twice for the effects of each new
signal pattern in X and Z, respectively, to go through one
update in Y and then one update in Z to appear in X and Z.

In the remaining discussion, we assume that Y models
the entire brain. If X is a sensory area, x ∈ X is always
supervised. The z ∈ Z is supervised only when the teacher
chooses to. Otherwise, z gives (predicts) motor output.

The area function f which is based on the theory of Lobe
Component Analysis (LCA) [36], a model for self-organization
by a neural area. Each area A has a weight vector v = (vb,vt).
Its pre-response vector is:

r(vb,b,vt, t) =
vb
‖vb‖

· b

‖b‖
+

vt
‖vt‖

· t

‖t‖
= v̇ · ṗ (1)

which measures the degree of match between the directions of
v̇ = (vb/‖vb‖,vt/‖vt‖) and ṗ = (ḃ, ṫ) = (b/‖b‖, t/‖t‖).

To simulate lateral inhibitions (winner-take-all) within each
area A, only top k winners among the c competing neurons
fire. Considering k = 1, the winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scale top-k winners so that the top-k
respond with values in (0, 1]. For k = 1, only the single winner
fires with response value yj = 1 and all other neurons in A do
not fire. The response value yj approximates the probability for
ṗ to fall into the Voronoi region of its v̇j where the “nearness”
is r(vbj ,b,vtj , t).

All the connections in a DN are learned incrementally
based on Hebbian learning — cofiring of the pre-synaptic
activity ṗ and the post-synaptic activity y of the firing neuron.
If the pre-synaptic end and the post-synaptic end fire together,
the synaptic vector of the neuron has a synapse gain yṗ.
Other non-firing neurons do not modify their memory. When
a neuron j fires, its firing age is incremented nj ← nj + 1
and then its synapse vector is updated by a Hebbian-like
mechanism:

vj ← w1(nj)vj + w2(nj)yjṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj)+w2(nj) ≡ 1. Note that a component in the gain
vector yjṗ is zero if the corresponding component in ṗ is zero.

The simplest version of w2(nj) is w2(nj) = 1/nj which
corresponds to:

v
(i)
j =

i− 1

i
v
(i−1)
j +

1

i
ṗ(ti), i = 1, 2, ..., nj , (4)

where ti is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

v
(nj)
j =

1

nj

nj∑
i=1

ṗ(ti) (5)

The initial condition is as follows. The smallest nj in Eq. (3)
is 1 since nj = 0 after initialization. When nj = 1, the initial
value of vj on the right side of Eq. (3) is used for pre-response
competition to find this winner j but the initial value of vj
does not affect the first-time updated vj on the left side since
w1(1) = 1− 1 = 0.

In other words, any initialization of weight vectors will
only determine who win (i.e., which newly born neurons
take the current role) but the initialization will not affect
the distribution of weights at all. In this sense, all random
initializations of synaptic weights will work equally well —
all resulting in weight distributions that are computationally
equivalent. Biologically, we do not care which neurons (in a
small 3-D neighborhood) take the specific roles, as long as the
distribution of the synaptic weights of these neurons lead to
the same computational effect. This neuronal learning model
leads to the following conjecture.

Conjecture 1: In a small 3-D neighborhood (e.g., of a
hundred nearby neurons), neural circuits are so different across
different biological brains that mapping the detailed neuron
wiring of brain is not informative at the level of individual
neuron.

The NIH Connectome program aims to “map the neural
pathways ... about the structural and functional connectivity
of the human brain. ... resulting in improved sensitivity,
resolution, and utility, thereby accelerating progress in the
emerging field of human connectomics.” The DN theory and
the above conjecture predict that such an NIH program is
not as scientifically useful as the NIH program hoped in
terms of understanding how the brain works and future studies
of abnormal brain circuits. For the brain, “more detailed
connectomics data” seems to be not as productive as more
complete and clear theories.

IV. FA AS A TEMPORAL MACHINE

In this section, we present an FA as a temporal machine,
although traditionally an FA is a logic machine, driven by
discrete event of input.

As we need a slight deviation from the standard definition
of FA, let us look at the standard definition first.

Definition 1 (Language acceptor FA): A finite automaton
(FA) M is a 5-tuple M = (Q,Σ, q0, δ, A), where Q is a finite
set of states, consists of symbols. Σ is a finite alphabet of
input symbols. q0 ∈ Q is the initial state. A ⊂ Q is the set of
accepting states. δ : Q×Σ 7→ Q is the state transition function.

This classical definition is for a language acceptor, which
accepts all strings x from the alphabet Σ that belongs to a
language L. It has been proved [12] that given any regular
language L from alphabet Σ, there is an FA that accepts L,
meaning that it accepts exactly all x ∈ L but no other string
not in L. Conversely, given any FA taking alphabet Σ, the
language L that the FA accepts is a regular language. However,
a language FA, just like any other automata, only deals syntax
not semantics. The semantics is primary for understanding a
language and the syntax is secondary.

We need to extend the definition of FA for agents that run
at discrete times, as follows:
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Definition 2 (Agent FA): A finite automaton (FA) M for a
finite symbolic world is a 4-tuple M = (Q,Σ, q0, δ), where Σ
and q0 are the same as above and Q is a finite set of states,
where each state q ∈ Q is a symbol, corresponding to a set of
concepts. The agent runs through discrete times t = 1, 2, ...,
starting from state q(t) = q0 at t = 0. At each time t − 1,
it reads input σ(t − 1) ∈ Σ and transits from state q(t − 1)
to q(t) = δ(q(t − 1), σ(t − 1)), and outputs q(t) at time t,

illustrated as q(t− 1)
σ(t−1)−→ q(t).

The inputs to an FA are symbolic. The input space is
denoted as Σ = {σ1, σ2, ..., σl}, which can be a discretized
version of a continuous space o input. In sentence recognition,
the FA reads one word at a time. The number l is equal to the
number of all possible words — the size of the vocabulary.
For a computer game agent, l is equal to the total number of
different percepts.

The outputs (actions) from a language acceptor FA are also
symbolic, A = {a1, a2, ..., an} which can also be a discretized
version of a continuous space of output. For a sentence detector
represented by an FA, when the FA reaches the last state, its
action reports that the sentence has been detected.

An agent FA is an extension from the corresponding
language FA, in the sense that it outputs the state, not only
the acceptance property of the state. The meanings of each
state, which are handcrafted by the human programmer but
are not part of the formal FA definition, are only in the
mind of the human programmer. Such meanings can indicate
whether a state is an accepting state or not, along many other
meanings associated with each state as our later example will
show. However, such concepts are only in the mind of the
human system designer, not something that the FA is “aware”
of. This is a fundamental limitation of all symbolic models.
The Developmental Network (DN) described below do not use
any symbols, but instead (image) vectors from the real-world
sensors and real-world effectors. As illustrated in Fig. 2, a DN
is grounded in the physical environment but an FA is not.

Fig. 3 gives an example of the agent FA. Each state is
associated with a number of cognitive states and actions,
shown as text in the lower part of Fig. 3, reporting action for
cognition plus a motor action. The example in Fig. 3 shows
that an agent FA can be very general, simulating an animal
in a micro, symbolic world. The meanings of each state in
the lower part of Fig. 3 are handcrafted by, and only in the
mind of, the human designer. These meanings are not a part
of the FA definition and are not accessible by the machine that
simulates the FA.

Without loss of generality, we can consider that an agent
FA simply outputs its current state at any time, since the state
is uniquely linked to a pair of the cognition set and the action
set, at least in the mind of human designer.

V. EMERGENT TURING MACHINES

It has been proved [12] that an FA with n states partitions
all the strings in Σ into n sets. Each set is called equivalence
class, consisting of strings that are indistinguishable by the FA.
Since these strings are indistinguishable, any string x in the
same set can be used to denote the equivalent class, denoted
as [x]. Let Λ denote an empty string. Consider Fig. 3. The

“well”

“kitten”

“kitten”

“looks”

“stares”

“young” “young”

“young”
“young”

“meal”

“cat”

“time” “full”

“hungry”
“hungry”

z1

z1: report “start”   z2: report “young”
z3: report “kitten-equiv.” z4: report “kitten-looks equiv.” 
z5: report “meal”  z6: report “hungry-equiv.” and eat 

z1z5 z6

z2 z3 z4

other
other

other other

to

z2to

Fig. 3. An FA simulates an animal. Each circle indicates a context
state. The system starts from state z1. Supposing the system is at
state q and receives a symbol σ and the next state should be q′, the
diagram has an arrow denoted as q σ−→ q′. A label “other” means
any symbol other than those marked from the out-going state. Each
state corresponds to a set of actions, indicated below the FA. The
“other” transitions from the lower part are omitted for brevity.

FA partitions all possible strings into 6 equivalent classes.
[Λ] = [“calculus”] as the agent does not know about “calculus”
although it is in Σ. All the strings in the equivalent class [Λ]
end in z1. All strings in the equivalent class [“kitten” “looks”]
end in z4, etc.

From the above discussion, we can see that the key power
of an FA is to lump very complex equivalent (q, σ) contexts
into equivalent classes.

A Turing Machine (TM) [12], [18] is a 5-tuple T =
(Q,Σ,Γ, q0, δ), where Q is the set of states, Σ and Γ are
the input and tape alphabets, respectively, with Σ ⊆ Γ, q0 is
the initial state, and δ is the transition function:

δ : Q× (Γ ∪ {∆})→ (Q ∪ {h})× (Γ ∪ {∆})× {R,L, S}

where ∆ is the blank symbol not in Γ, h denotes the halt state,
and R,L, S denote the head motion, right, left, and stationary,
respectively. Consider the following two definitions:

1) Define Q′ to include also the tape write action w and
the head move action m:

Q′ = (Q ∪ {h})× (Γ ∪ {∆})× {R,L, S}.

Each state in Q′ is a three tuple (q, w,m) where w and m can
be empty.

2) Let Σ′ = Γ ∪ {∆}.

The above transition function δ for TM becomes the
transition function δ′ of an FA: δ′ = Q′ × Σ′ 7→ Q′.

Therefore, the controller of any TM is an FA. A grounded
DN can learn the FA perfectly. It takes input σ ∈ Σ′ from
the real word and its action can include head write and head
motion. A TM is not grounded, but the DN is grounded: A
TM senses from, and acts on, a tape but a DN senses from,
and acts on, its real-world physical environment.

The completeness of agent FA-in-DN can be described as
follows. Given a vocabulary Σ′ representing the elements of
a symbolic world, a natural language L is defined in terms
of Σ′ where the meanings of all sentences (or events) in L
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are defined by the set of equivalent classes, determined by Q′
of FA-in-DN. When the number of states is sufficiently large,
a properly learned FA-in-DN can sufficiently characterize the
cognition and behaviors of an agent living in the real physical
world with vocabulary Σ′.

This argument is based on the following observation: As
long as the context state q(t − 1) is properly learned so that
it contains all the information that is necessary and sufficient
for generating the following states. Then q(t−1) with sensory
input σ(t−1) correctly selected from a cluttered scene should

be sufficient to generate the next state: q(t− 1)
σ(t−1)−→ q(t).

The Chomsky hierarchy [18] after the work of Norm
Chomsky in particular and the automata and languages theory
in classical computer science [12], [18] in general regard only
Turing Machines as general-purpose programming machine
because they mainly consider only the syntax of a computer
language, not the rich semantics that a symbol can represent.
However, a symbolic state q and an input symbol σ can
practically represent any set of meanings. Yet, the meanings
of general purpose with Turing Machines and FA-in-DN are
different: With a TM, it means what kind of sequence of
computations the TM program can represent. With the latter
FA-in-DN, it means the richness of meaning any symbol (q
and σ) can represent so that the FA-in-DN can represent any
emergent state-based agent that has a finite memory.

In particular, it is important to note that a state can
remember very early event [38], [31]: E.g., an event needed
by q(t) can be contained in q(t− 1), q(t− 2), etc.

But FA-in-DN goes beyond the symbolic AI, because it
automatically develop internal representations — emergent.

VI. EXPERIMENTAL RESULTS

Due to the focused theoretical subject here and the space
limitation, detailed experimental results of DN are not included
here. The DN has had several versions of experimental embod-
iments, called Where-What Networks (WWNs), from WWN-1
[14] to WWN-7 [43]. Each WWN has multiple areas in the
Z areas, representing the location concept (Location Motor,
LM), type concept (Type Motor, TM), or scale concept (Scale
Motor, SM), and so on.

A learned WWN can simultaneously detect and recognize
learned 3-D objects from new unobserved cluttered natural
scenes [17], [37].

The function of this space-time machine DN differs de-
pending on the context information in its Z area [39]. If there
is no Z signal at all, the WWN is in an (emergent) free-viewing
mode and it detects any learned object from the cluttered scene
and tells its location from LM, type from TM, and scale from
SM. If the LM area fires representing a location (intent or
context), the WWN recognizes the object near that intended
location from the cluttered scene and tells its type from TM and
scale from SM. If the TM area fires representing an object type
(intent or context) the WWN finds (i.e., detects) an intended
object type from the cluttered scene and tells its location from
LM and scale from SM.

A WWN can also perform autonomous attention: If the
DN suppresses the firing neuron that represents an object

type in TM, the WWN switches attention from one object
type to another object type that barely lost in the previous
Y competition — feature-based autonomous attention. If the
DN suppresses the firing neuron in LM, the WWN switches
attention from one object location to another object location
that barely lost in the previous Y competition — location-
based autonomous attention.

The WWN has also performed language acquisition for a
subset of natural language and also generalized and predicted
[20]. For example, predict from one person Joe to his hierar-
chical properties such as male and human, and predict from
Penguin to its hierarchical properties such as non-flying and
bird.

The WWNs have versions that are motivated, such as pain
avoidance and pleasure seeking, so that its learning does not
need to be supervised [41]. The learned tasks include object
recognition under reinforcement learning and autonomous for-
aging (wandering around) in the presence of a friend and an
enemy.

However, the experimental results from such DN experi-
ments are difficult to understand and to train without a clear
theoretical framework here that links DNs with the well-known
automata theory and the mathematical properties presented as
the three theorems that have been proved here.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, the controller of a TM is an FA. This paper
presents a theory that a DN interactively and incrementally
learns a naturally emerging TM by imitating a teacher TM that
is operating. The new theory builds on the established theory
about FA in DN. How much such naturally emergent TM can
explain the logic of a brain is still left for future work, although
the general-purpose nature of TM is widely recognized.

This theory gives a developmental TM. By developmental,
we mean that the model regards brain areas should automati-
cally emerge from activities, instead of fully specified rigidly
by the genome. This view is supported by a great deal of
cross-modal plasticity found in mammalian brains, from eye
deprivation by Torsten N. Wiesel and David H. Hubel [42],
to the auditory cortex that processes visual information by
Mriganka Sur et al. [25], to the reassignment of modality —
visual cortex is reassigned to audition and touch in the born
blind as reviewed by Patrice Voss [26].

Therefore, it appears that a valid brain model at least
should not assume a static existence of — genome rigidly
specified — Brodmann areas. This static existence has been
prevailing in almost all existing biologically inspired models
for sensorimotor systems. Instead, a brain model should ex-
plain the emergence, and known plasticity of, brain areas. DP
enables areas to emerge in DN and adapt but we have not
experimentally conduct such studies. The genome provides the
power of cells to move and connect. The genome also plays a
major role in early and coarse connections of a brain. However,
fine connections in the brain seem to be primarily determined
by the statistics of activities from the conception of the life all
the way up to the current life time.
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