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ABSTRACT
This article explores a variety of topics related to the question of testing the equality of covariancematrices
in multivariate linear models, particularly in the MANOVA setting. Further, a plot of the components of
Box’s M test is proposed that shows how groups differ in covariance and also suggests other visualizations
and alternative test statistics. These methods are implemented and freely available in the heplots and
candisc packages for R. Examples from the article and some further extensions are available in the online
supplementary materials.

1. Introduction

To make the preliminary test on variances is rather like putting to sea
in a rowing boat to find out whether conditions are sufficiently calm
for an ocean liner to leave port.—G. E. P. Box (1953)

This article concerns the extension of tests of homogeneity
of variance from the classical univariate ANOVA setting to the
analogousmultivariate (MANOVA) setting. Such tests are a rou-
tine but important aspect of data analysis, as particular viola-
tions can drastically impact model estimates (Lix and Keselman
1996). In the multivariate context, the following questions and
topics are of main interest here:

� Visualization: How can we visualize differences among
group variances and covariance matrices, perhaps in a way
that is analogous to what is done to visualize differences
among group means? Multivariate linear models (MLMs)
present additional challenges for data visualization because
we often want to see the effects for a collection of response
variables simultaneously, which pushes the boundaries of
typical graphical displays. As will be illustrated, differences
among covariance matrices can be comprised of spread
in overall size (“scatter”) and shape (“orientation”). When
there are more than a few response variables, what low-
dimensional views can show the most interesting proper-
ties related to the equality of covariance matrices?

� Other test statistics: Test statistics for MANOVA and for
equality of covariance matrices are based on properties of
eigenvalues of variousmatrices. Available tests statistics for
mean differences suggest alternatives for the question of
equality of covariance matrices.

The following sections provide a capsule summary of the
issues in this topic. Most of the discussion is couched in terms
of a one-way design for simplicity, but the same ideas can
apply to two-way (and higher) designs, where a “group” factor
is defined as the product combination (interaction) of two or
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If group sizes are greatly unequal and homogeneity of variance is violated, then the F statistic is too liberal (p values too large) when large sample variances are associated
with small group sizes. Conversely, the F statistic is too conservative if large variances are associated with large group sizes.

more factor variables. When there are also numeric covariates,
this topic can also be extended to the multivariate analysis of
covaraiance (MANCOVA) setting. This can be accomplished
by applying these techniques to the residuals from predictions
by the covariates alone.

1.1. Homogeneity of Variance in Univariate ANOVA

In classical (Gaussian) univariate ANOVA models, the main
interest is typically on tests of mean differences in a response
y according to one or more factors. The validity of the typical
F test, however, relies on the assumption of homogeneity of
variance: all groups have the same (or similar) variance,

σ 2
1 = σ 2

2 = · · · = σ 2
g .

It turns out that the F test for differences in means is rel-
atively robust to violation of this assumption (Harwell et al.
1992), as long as the group sizes are roughly equal.1

A variety of classical test statistics for homogeneity of vari-
ance are available, including Hartley’s Fmax (Hartley 1950),
Cochran’s C (Cochran 1941), and Bartlett’s test (Bartlett 1937),
but these have been found to have terrible statistical proper-
ties (Rogan and Keselman 1977), which prompted Box’s famous
quote.

Levene (1960) introduced a different form of test, based on
the simple idea that when variances are equal across groups, the
average absolute values of differences between the observations
and group means will also be equal, that is, substituting an L1
norm for the L2 norm of variance. In a one-way design, this is
equivalent to a test of group differences in the means of the aux-
iliary variable zi j = |yi j − ȳi|.

More robust versions of this test were proposed by Brown
and Forsythe (1974). These tests substitute the group mean by
either the group median or a trimmed mean in the ANOVA
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of the absolute deviations, and should be almost always pre-
ferred to Levene’s version (which unfortunately was adopted as
the default in some software, such as SPSS). See Conover, John-
son, and Johnson (1981) for an early review and Gastwirth, Gel,
and Miao (2009) for a general discussion of these tests. In what
follows, we refer to this class of tests as “Levene-type” tests and
suggest a multivariate extension described in the online supple-
mentary materials.

1.2. Homogeneity of Variance inMANOVA

MANOVA focuses on testing differences among mean vectors,

H0 : μ1 = μ2 = · · · = μg .

However, the standard test statistics (Wilks’ Lambda, Hotelling-
Lawley trace, Pillai-Bartlett trace, Roy’s maximum root) rely
upon the analogous assumption that the within-group covari-
ance matrices for all groups are equal,

�1 = �2 = · · · = �g .

In themultivariate setting, there has been considerable atten-
tion to the sensitivity of these tests to both nonnormality and
lack of equality of covariance matrices, largely through simula-
tion studies (e.g., Finch and French 2013; Hakstian, Roed, and
Lind 1979). Most of these have been conducted in the simple
case of two-group designs (where Hotelling’s T 2 is the equiva-
lent of all the standard tests) or in one-way designs. A classic
study in this area is Olson (1974), that recommended:

for protection against nonnormality and heterogeneity of covari-
ance matrices, the largest-root test should be avoided, while the
Pillai–Bartlett trace test may be recommended as the most robust of
the MANOVA tests, with adequate power to detect true differences
in a variety of situations (p. 894).

We mention in passing that, with a burgeoning interest in
robustmethods over the last few decades, there have been a vari-
ety of proposals for how to conduct robust tests of differences
onmean vectors, mostly in the one-wayMANOVA setting (e.g.,
Aelst and Willems 2011; Todorov and Filzmoser 2010). Gener-
ally speaking, these involve using more robust alternatives for
mean vectors (medians, trimmed means, rank-based methods)
and for covariance matrices (e.g., minimum covariance deter-
minant (MCD) and minimum volume ellipsoid (MVE)).

Yet, there has not been as much attention paid to the second-
order problemof assessing equality of covariancematrices. Box’s
M test, described below, remains the main procedure readily
available in statistical software for this problem. The properties
and alternatives to Box’s test have not been widely studied (some
exceptions are O’Brien 1992; Tiku and Balakrishnan 1984).

However, beyond issues of robustness, the question of equal-
ity of covariance matrices is often of general interest itself. For
instance, variability is often an important issue in studies of strict
equivalence in laboratories comparing across multiple patient
measurements and in other applied contexts (seeGastwirth et al.
2009 for other exemplars). Moreover, the outcome of such tests
often have important consequences for the details of a main
method of analysis. Just as the Welsh t-test (Welch 1947) is now
commonly used and reported for a two-group test of differences
inmeans under unequal variances, a preliminary test of equality
of covariance matrices is often used in discriminant analysis to

decide whether linear (LDA) or quadratic discriminant analysis
(QDA) should be applied to a given problem. In such cases, the
data at hand should inform the choice of statistical analysis to
utilize.

1.3. Assessing Heterogeneity of CovarianceMatrices:
Box’s M Test

Box (1949) proposed the following likelihood-ratio test (LRT)
statistic for testing the hypothesis of equal covariancematrices,

M = (N − g) ln |Sp| −
g∑

i=1

(ni − 1) ln |Si| , (1)

where N = ∑
ni is the total sample size and Sp = (N −

g)−1∑g
i=1(ni − 1)Si is the pooled covariance matrix. M can

thus be thought of as a ratio of the determinant of the pooled
Sp to the geometric mean of the determinants of the separate Si.

In practice, there are various transformations of the value of
M to yield a test statistic with an approximately known distribu-
tion (Timm 1975). Roughly speaking, when each ni > 20, a χ2

approximation is often used; otherwise, an F approximation is
known to be more accurate.

Asymptotically, −2 ln(M) has a χ2 distribution. The χ2

approximation due to Box (1949, 1950) is that

X2 = −2(1 − c1) ln(M) ∼ χ2
df ,

with df = (g − 1)p(p+ 1)/2 degrees of freedom, and a bias
correction constant:

c1 =
(∑

i

1
ni − 1

− 1
N − g

)
2p2 + 3p− 1

6(p+ 1)(g − 1)
.

In this form, Bartlett’s test for equality of variances in the uni-
variate case is the special case when there is only one response
variable, so Bartlett’s test is sometimes used as univariate follow-
up to determine which response variables show heterogeneity of
variance.

Yet, like its univariate counterpart, Box’s test is well-known
to be highly sensitive to violation of (multivariate) normality
and the presence of outliers. For example, Tiku and Balakrish-
nan (1984) concluded from simulation studies that the normal-
theory LRT provides poor control of Type I error under even
modest departures from normality. O’Brien (1992) proposed
some robust alternatives, and showed that Box’s normal theory
approximation suffered both in controlling the null size of the
test and in power. Zhang and Boos (1992) also carried out simu-
lation studieswith similar conclusions andused bootstrapmeth-
ods to obtain corrected critical values.

1.4. Visualizing Heterogeneity

The goal of this article is to use the above background as a plat-
form for discussing approaches to visualizing and testing the
heterogeneity of covariance matrices in multivariate designs.
While researchers often rely on a single number to determine
if their data have met a particular threshold, such compression
will often obscure interesting information, particularly when a
test concludes that differences exist, and one is left to wonder
“why?”. It is within this context where, again, visualizations often
reign supreme. In fact, we find it somewhat surprising that this
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issue has not been addressed before graphically in any system-
atic way.

In this article, we propose three visualization-based
approaches to questions of heterogeneity of covariance in
MANOVA designs: (a) direct visualization of the information
in the Si and Sp using data ellipsoids to show size and shape
as minimal schematic summaries; (b) a simple dotplot of the
components of Box’s M test: the log determinants of the Si
together with that of the pooled Sp. Extensions of these simple
plots raise the question of whether measures of heterogeneity
other than that captured in Box’s test might also be useful; and,
(c) the connection between Levene-type tests and an ANOVA
(of centered absolute differences) suggests a parallel with a
multivariate extension of Levene-type tests and a MANOVA.

Accordingly, the following sections introduce and apply
our conceptual framework for general graphical methods for
visualizing data in relation to MLM-related questions and their
applications. This is based on the simple ideas that: (a) a data
ellipsoid provides a visual summary of location and scatter of
a multivariate sample; (b) these can be combined in various
ways to give visual tests of group differences in means and
covariance matrices; and, (c) when there are more than just a
few response variables, a reduced-rank (canonical) transforma-
tion provides an appealing way to visualize these effects in an
optimal low-dimensional approximation.

Section 4 introduces some novel visualizations of the com-
ponents related to Box’s test, which. in turn, suggest other
possible test statistics that deserve further study. For instance,
we have found hypothesis–error (HE) plots appropriate for
visualizing mean differences in MANOVA designs. A section
in the online supplementary materials describes a multivariate
generalization of Levene’s test within the HE plot framework
that yields attractive and useful displays.

A different graphical approach to the main question is to
consider multivariate dispersion in terms of distances of the
points from their centroids; this is illustrated in the Supple-
mentary Materials. These methods are all implemented in R (R
Core Team 2015), principally in the heplots and candisc
packages.2

2. Visualizing CovarianceMatrices

Before diving into details and statistical tests, it is useful to
see how to visualize covariance matrices themselves. We do
this using the graphical analog of minimally sufficient statistics
(ȳi, Si) for the MANOVA problem—a minimally sufficient
graphical display. This graphical principle has been called visual
thinning (Friendly 2007): reducing a graphical display to the
essentials of what you want to see by relying upon statistics
that most efficiently capture the parameters of interest. In
multivariate displays, this usually means replacing data points
by well-chosen visual summaries.

2.1. Data Ellipsoids

The essential idea (Dempster 1969; Friendly, Monette, and
Fox 2013) is that for a p-dimensional sample, Y n×p, the p× p

 The complete R code for our examples is provided in the online supplementary
materials, and is hosted at https://mattsigal.github.io/eqcov_supp/

covariance matrix S can be represented by the p-dimensional
concentration or data ellipsoid, Ec of size (“radius”) c. This is
defined as the set of all points y satisfying

Ec(y, S) := {y : (y − ȳ)T S−1 (y − ȳ) ≤ c2} . (2)

It is readily seen that the quadratic form in Eqn. (2) corre-
sponds to the set of pointswhose squaredMahalanobis distances
D2

M(y) = (y − ȳ)T S−1 (y − ȳ), from the centroid of the sample,
ȳ = (ȳ1, ȳ2, . . . , ȳp)T, are less than or equal to c2.

When the variables are multivariate normal, the data
ellipsoid approximates a contour of constant density in
their joint distribution. In this case, D2

M(y) has a large-
sample χ2

p distribution, or, in finite samples, approximately
[p(n − 1)/(n − p)]Fp,n−p. Hence, in the bivariate case, taking
c2 = χ2

2 (0.95) = 5.99 ≈ 6 encloses approximately 95% of the
data points under normal theory. A 68% coverage data ellipse
with c2 = χ2

2 (0.68) = 2.28 gives a bivariate analog of the stan-
dard x̄ ± 1sx and ȳ ± 1sy intervals. See Friendly et al. (2013)
for properties of data ellipsoids and their use to interpret a
wide variety of problems and applications in multivariate linear
models.

In practice, p-dimensional data ellipsoids can be viewed in
variable space via 2D or 3Dprojections, or for all p variables, in a
pairwise scatterplotmatrix of 2D projections. Alternatively, they
can be viewed in the space of any linear transformationYT �→
Y �, where the principal components transformation provides
useful views in low-D projections accounting for maximal total
variance.

2.2. Simple Example: Iris Data

It is easiest to illustrate these ideas using the well-known Iris
dataset (Anderson 1935), which pertains to fourmeasures (sepal
width and height, and petal width and height) of three species of
iris flowers from the Gaspe Peninsula. One approach to visual-
izing within group variability is to begin with an enhanced scat-
terplot that adds a standard (68%) data ellipse for each group.
Then, imagine taking away the data points (and other enhance-
ments) leaving only the data ellipses, and add the corresponding
data ellipse for the pooled sample variance covariancematrix Sp.
This gives a visual summary of group means and of the within-
group covariance, and is shown in the right panel of Figure 1.
In this plot, the variances and covariances look similar for the
Versicolor and Virginca groups, but the Setosa group differs by
exhibiting a higher correlation between sepal length and width
and a smaller variance on sepal length.

Finally, we center all the ellipses at the origin in order to focus
only on size and shape of the within-group covariances, so that
these can be directly compared visually.3 For these two variables,
we can now see that the covariance ofVirginca is nearly identical
to Sp, while Versicolor has somewhat greater variance on sepal
length.4

 This example seems at first glance to be a special case, because all variables are
measured in the same units. However, the units do notmatter inmost of our plots
because the axis ranges are taken from the data and scale units are not equated.
The plots in Figure  would look identical except for tick labels if we transformed
sepal length from centimeters to inches.

 Such plots are produced by the covEllipses() function in the heplots
package.

https://mattsigal.github.io/eqcov_supp/
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Figure . Covariance ellipses for the Iris data. Left: separate groups and the pooled within-group covariance matrix; right: all covariance matrices centered at the origin.

Thismethod becomes particularly useful whenwe look at the
data ellipses for all pairs of variables in scatterplotmatrix format.
As in the right panel of Figure 1, we center these ellipsoids at
the origin. The display in Figure 2 shows only size (variance)
and shape (correlation) differences, which speak directly to the
question of homogeneity of covariance matrices.

It can now be seen precisely how the covariance matrix for
Setosa differs from those of the other species. The within-group
correlations differ for all pairs of variables, and as well, the vari-
ances are noticeably smaller for petal width and petal length. In
addition, whileVersicolor andVirginca have similar shapes, close
to that of the pooled covariance matrix, in most panels (partic-
ularly for petal width), Virginca exhibits greater variance.

... More General Models
In these plots, the centered views in Figure 2 correspond to an
analysis of the covariancematrices among the residuals from the
MLM predicting the four responses from the species variable.
Consequently, the same ideas apply inmore general models. For
example, in a MANCOVA setting, the model may include one
or more quantitative covariates.5 The analyses suggested above
could then be applied to the residuals from thismodel. Likewise,
in a two-way MANOVA design, with factors A and B, we could
treat the combinations of these factors as the “group” variable
and view the pairwise data ellipses.6

2.3. Low-Rank Views

With p > 3 response variables, a simple alternative to the pair-
wise 2D projections shown in Figure 2 is the projection into the
principal component space accounting for the greatest amounts

 For instance, in R notation, mod1 <- lm(cbind(y1, y2, y3) ˜
Group + x1 + x2), where three response variables are being predicted by
the grouping factor and two covariates.

 For example, we could estimate such a model within R using mod2
<- lm(cbind(y1, y2, y3) ˜ A:B) and then generate the pair-
wise covariance data ellipses with covEllipses(residuals(mod2),
variables=1:3).

of total variance in the data. For the Iris data, a simple PCA of
the covariance matrix shows that nearly 98% of total variance in
the data is accounted for in the first two dimensions.

Figure 3 shows the plots of the covariance ellipsoids for the
first two principal component scores, uncentered (left panel)
and centered (right panel). The dominant PC1 (92% of total
variance) essentially orders the species by a measure of over-
all size of their sepals and petals. In the centered view, it can
again be seen how Setosa differs in covariance from the other
two species, and that while Virginca and Versicolor both have
similar shapes to the pooled covariance matrix, Versicolor has
somewhat greater variance on PC1.

We note that PCA is focused on a low-rank approximation
to account for total variance of the data. In the MANOVA con-
text, the main question concerns between-group variance (dif-
ferences among means) relative to within-group variance. For
this question, views in canonical space provide the same advan-
tages, as described in the online supplementary materials.

... Small Dimensions canMatter
For the Iris data, the first two principal components account
for 98% of total variance, so we might think we are done here.
Yet, it turns out that in a variety of multivariate contexts small
dimensions can matter. For example, Friendly and Kwan (2009)
showed that problems of multicollinearity in regression mod-
els could be readily viewed as near singularities that exist in the
space of the smallest principal component dimensions, but can-
not be seen in the larger dimensions. Similarly, multivariate out-
liers often do not appear in bivariate views of the data in vari-
able space, but can stand out like sore thumbs in the space of the
smallest PCA dimensions.7

 A simple yet powerful demonstration: Generate triples, (x1, x2, x3) as U [0, 1]
and scale each set to unit sum, so all points lie on the simplex x1 + x2 + x3 = 1.
Then, add a few outliers within a unit sphere of radius r ≤ 0.05 centered at the
origin. The outliers will not stand out in any univariate or bivariate plots along
the coordinate axes, but will be dramatic when viewed along the third principal
component, which is orthogonal to the plane of the simplex.
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Figure . Pairwise data ellipses for the Iris data, centered at the origin. This view makes it easy to compare the variances and covariances for all pairs of variables.

Figure . Covariance ellipsoids for the first two principal components of the iris data. Left: Uncentered, showing groupmeans on the principal components; right: centered
at the origin.
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Figure . Covariance ellipsoids for the last two principal components.

As we will see, Box’sM test, because it is a (linear) function of
all the eigenvalues of the between- and within-group covariance
matrices, is also subject to the influence of the smaller dimen-
sions, where differences among Si and of Sp can lurk.

Figure 4 shows the covariance ellipsoids in (PC3, PC4)
space. PC3 contrasts Sepal.Length against the other vari-
ables; PC4 contrasts Sepal.Length and Petal.Width vs.
Sepal.Width and Petal.Length. The main point is that,
even though these dimensions contribute little to total variance,
there are more pronounced differences in the within-group
shapes (correlations) relative to the pooled covariance, and
these contribute to a rejection of homogeneity by Box’s M test.
Here, we see that the correlation for Virginca is of opposite
sign from the other two groups. (The total sample covariance,
ignoring Species, is of course uncorrelated in all principal
component dimensions.)

3. Other Examples

In what follows, it will be instructive to use two other empiri-
cal examples to illustrate our graphical methods: (a) one where
it turns out that there are important differences among group
means but little evidence for heterogeneity of covariances; (b)
another where there are differences in both means and hetero-
geneity but the number of response variables is large, which
makes understanding these effects more difficult.

3.1. Skulls Data

For comparison with what we have seen for the Iris data, the
Skulls dataset provides an example where there are also sub-
stantial differences among the means of groups, but little evi-
dence for heterogeneity of their covariance matrices.

The data concern four physical measurements of size and
shape made on 150 Egyptian skulls from five epochs ranging
from 4000 BC to 150 AD. The measures are: maximal breadth

(mb), basibregmatic height (bh), basialveolar length (bl), and
nasal height (nh) of each skull. See http://www.redwoods.edu/
instruct/agarwin/anth_6_measurements.htm for the formal def-
initions of these measures, and Figure 5 for a diagram of
what they pertain to. The question of interest in this anal-
ysis is whether and how these measurements changed over
time. Systematic changes over time inmeans and/or covariances
is of interest because it could indicate interbreeding among
migrant populations (or the influence of other factors, such as
diet).

A MANOVA of this dataset shows a highly significant
effect of the epoch factor (Pillai trace = 0.3533, approx.
F(16, 434.45) = 3.512, p < 0.000001).8 Treating epoch as an
ordered factor yields an even strong test for linear trend in
the means over time, and all nonlinear trends are effectively
null. The conclusion so far is that for these measures of skull
size and shape, there are approximately systematic changes over
time.

Figure 6 shows the centered covariance ellipsoids for all
epochs and for the pooled data.9 For the most part, these are all
coincident, indicating equal covariance matrices. Only for the
variable basialveolar length does any epoch differ perceptibly,
where it has slightly greater variance in the earliest epoch
(4000BC). It can also be seen that these four measures are
relatively uncorrelated within each epoch.

3.2. Wine Data

The Wine data10 is a classic in the machine learning literature
as a high-D classification problem, but is also of interest for
examples of MANOVA and discriminant analysis. These data
are the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars
of grapes: Barolo, Grignolino, and Barbera. The analysis deter-
mined the quantities of 13 constituents found in each of the three
types of wines. The total sample size isN = 178, but the data are
unbalanced (ni = 59, 71, 48).

By way of introduction to this dataset, the set of boxplots in
Figure 7 for all of the response variables by Cultivar gives a
useful overview. It is easy to see that most of the variables differ
substantially among the cultivars, but the pattern of differences
in means or medians is complex across the variables. There is
also a substantial number of outliers for some of the variables,
particularly MalicAcid and Proa. It is much harder to char-
acterize how the wines differ in variance, though differences on
some variables appear pronounced (e.g., MalicAcid, Flav,
Color).

4. Visualizating Box’s M Test

The covariance ellipse plots we have seen in earlier examples
(e.g., Figure 1 and Figure 6) are useful schematic summaries, but
in some cases, a simpler visual summary might be more useful.

 This can be conducted as a MLM in R as follows: lm(cbind(mb, bh, bl,
nh) ˜ epoch, data=Skulls).

 Such figures can be generated using the covEllipses() function from the
heplots package.

 This dataset is contained in thecandisc package, and is originally from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Wine ).

http://www.redwoods.edu/instruct/agarwin/anth_6_measurements.htm
http://archive.ics.uci.edu/ml/datasets/Wine
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Figure . Diagram of the skull measurements for the Egyptian skulls dataset. Maximal breadth and basibregmatic height are the basic measures of “size” of a skull.
Basialveolar length and nasal height are important anthropometric measures of skull “shape”.

Equation (1) suggests that the simplest visualizationmight focus
on the components of Box’s M test, for example, a dot plot of the
log determinants of the covariancematrices Si together with that
of the pooled Sp. To the extent that the covariance matrices are
all equal, so too should the values on which Box’s test are based.

An important virtue of these plots is that they can show
how the groups differ from each other, and from the pooled
covariance matrix on the scalar measure ln |S|. In this way, they
can suggest more specific questions or hypotheses regarding the
equality of covariancematrices, analogous to the use of contrasts

Figure . Pairwise data ellipses for the Skulls data, centered at the grand mean. Those for the pooled data are shaded.
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Figure . Boxplots of the distributions of the Wine variables, by Cultivar. How do the means differ? How do the variances differ?

setosa

versicolor

virginica

pooled

−13 −12 −11 −10 −9 −8

Iris data

log determinant

Species

4000BC

3300BC

1850BC

200BC

AD150

pooled

10 11 12 13

Skulls data

log determinant

Epoch

Figure . Plots of log determinants of the components of Box’s M test with asymptotic % confidence intervals. Left: The Iris data shows substantial heterogeneity;
right: the Skulls data shows some small differences, but no evidence for heterogeneity.

and linear hypotheses for testing differences among groupmean
vectors.

Such plots are far more useful with confidence intervals
around the ln |Si| and ln |Sp|. Recently, Cai, Liang, and Zhou
(2015) suggested an asymptotic, central-limit theorem approxi-
mation to the distribution of log |S|.11

To illustrate, Box’s M test gives an approximate chi-square,
χ2(20) = 140.94, p < 2.2 × 10−16 for the Iris data, while the
Skulls data gives χ2(40) = 45.67, p = 0.248. The correponding
plots for these tests are shown in Figure 8. For the Iris data
(left), Setosa stands out having a substantially smaller covari-
ance matrix (by log |S|) than the other species. The intervals for
Versicolor and Virginica overlap with that for ln |Sp|, but seem
to differ from each other.

In contrast, for the Skulls data (Section 3.1), the plot of
the log determinants in Figure 8 (right) shows that the 95%

 Box’s M test is calculated by the function boxM() in heplots. These plots are
produced by the plot()method for ”boxM” objects.

confidence intervals for the ln |Si| all overlap with each other
and with that for the pooled ln |Sp|.

Although these differences among covariance matrices are
not significant by Box’s M test, we can use this example to
illustrate how such plots can suggest scientifically meaningful
hypotheses regarding the equality of covariance matrices, anal-
ogous to what we are accustomed to doing with tests for mean
differences. For the sake of an example, assume that changes
in variances and covariances of such skull measurements are of
interest, and that we were able to obtain a sample 10 times as
large from each epoch, giving the same pattern of results, but
with standard errors divided by

√
10.Wemight then try to inter-

pret the general decrease in ln |Si| from the earliest epoch to
200BC. Were skulls becoming more homogeneous over time?
But, what happened in the 150 AD sample?

For completeness, and use below, Figure 9 shows the same
type of plot for the Wine data. Box’s M test is overwhelm-
ingly significant, χ2(182) = 684.2, p < 2.2 × 10−16, and the
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barolo

grignolino

barbera

pooled

−12 −10 −8 −6 −4 −2

log determinant

Cultivar

Figure . Plot of log determinants of the covariance matrices for the Wine data.

figure shows why: the ln |Si| for Barbera and Barolo differ
substantially from that of the pooled ln |Sp| and from that
of Grignolino, which is closest to that of the pooled covari-
ance matrix. But the Wine data has 13 response variables; the
online Supplementary Appendix describes some other graph-
ical methods that help to understand this in a 2D canonical
space.

4.1. Eigenvalue Plots

Havingmade some progress with visualizing the components of
Box’s M test, it is natural to ask if other plots or other test statis-
tics can address these relationships in a more nuanced man-
ner. In the MLM, the various test statistics (Wilks’�, Hotelling-
Lawley and Pillai Trace criteria, Roy’smaximum root test) are all
functions of the eigenvalues of a hypothesis matrixH relative to
an error matrix E. So too, all reasonable test statistics for equal-
ity of covariance matrices are functions of the eigenvalues of the
Si and Sp.

Another sensible plot is therefore an analog of a scree plot of
eigenvalue versus dimension number, with separate curves for
each matrix, similar to their use in exploratory factor analysis.

Figure 10 shows such a plot for the Wine data. This dataset
comprises 13 response variables, so Box’s test is based on 13
eigenvalues. To preserve resolution, we show eigenvalues on the
log scale, and in two separate panels.

It can be seen that the eigenvalues on the largest dimensions
do not differ very much across the groups. However, they differ
progressively more among the groups on the dimensions with
small eigenvalues. The differences among the groups in the right
panel of Figure 10 are similar to what was seen in the the log
determinants plot (Figure 9): Grignolino (group 2) is quite close
to the result for the pooled covariance matrix, while the Barolo
(group 1) and Barbera (group 3) wines differ. This demonstrates
that Box’s M test is indeed sensitive to differences among the
smaller eigenvalues.

4.2. Other Test Statistics

As we saw above (Section 2), the question of equality of covari-
ance matrices can be expressed in terms of the similarity in size
and shape of the data ellipses for the individual group Si rela-
tive to that of Sp. Box’s M test uses just one possible function to
describe this size: the logs of their determinants.

When � is the covariance matrix of a multivariate vector
y with eigenvalues λ1 ≥ λ2 ≥ . . . λp, the properties shown in
Table 1 represent methods of describing the size and shape of
the ellipsoid in R

p. More general theory and statistical appli-
cations of the geometry of ellispoids is given by Friendly et al.
(2013).

Hence, for a sample covariance matrix S, |S| is a measure of
generalized variance and ln |S| is a measure of average variance
across the p dimensions.

The ”boxM” methods in heplots can compute and plot
all of the functions of the eigenvalues in Table 1. The results are
shown in Figure 11.

Except for the absence of error bars, the plot for log product
in Figure 11 (upper left panel) is the same as that in Figure 9. In
principle, it is possible to add such confidence intervals for all
these measures through the use of bootstrapping, but this has
not yet been implemented.

For this dataset, the pattern of points in the plot for Box’sM is
also more or less the same as that for the precisionmeasure. The
plots for the sum of and maximum eigenvalue are also similar
to each other, but differ from those of the two measures in the

1

1

1

1
1

1

1 2 3 4 5 6

−
2

0
2

4
6

8
10

Dimension

lo
g 

E
ig

en
va

lu
e

2

2

2

2 2 2

3

3

3 3

3

3

p

p

p

p
p

p

1
2
3
p

Barolo
Grignolino
Barbera
Pooled

1 1
1

1
1

1

1

7 8 9 10 11 12 13

−
6

−
5

−
4

−
3

−
2

Dimension

lo
g 

E
ig

en
va

lu
e

2
2

2

2

2 2

2

3
3

3
3

3
3

3

p

p
p

p

p

p

p

Figure . Scree plots of log eigenvalues of the covariance matrices for the Wine data. Those for the pooled covariance matrix are shown with a heavier line, marked ‘p’.
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Table . Statistical and geometrical properties of “size”of an ellipsoid.

Size Conceptual formula Geometry Function

(a) Generalized variance: det(�) = ∏
i λi area, (hyper)volume geometric mean

(b) Average variance: tr(�) = ∑
i λi linear sum arithmetic mean

(c) Average precision: 1/tr(�−1) = 1/
∑

i(1/λi) harmonic mean
(d) Maximal variance: λ1 maximum dimension supremum
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Figure . Plot of eigenvalue statistics of the covariance matrices for the Wine data.

left column of Figure 11. The main point is that these are not all
the same, so different functions reflect different patterns of the
eigenvalues.12

The sum of eigenvalues is similar in form to the Hotelling–
Lawley trace criterion used in MLM test and the maximum
eigenvalue is similar to Roy’s test, and all these test statistics have
convenient F approximations. Plots such as Figure 11 and those
we have tried for other examples suggest that it would be useful
to develop analogous tests for homogeneity of covariancematri-
ces, with possibly different properties of error rates and power
against specified alternatives. We do not pursue this topic here,
but leave it open for further research.

5. Concluding Remarks

The idea for this article arose from discussion in a graduate
course onmultivariate data analysis in connectionwith the topic
of the assumptions of MANOVA (independence, multivariate
normality of residuals, homogeneity of covariance matrices),
diagnostic tests for these, and remedies when they are violated.

 In analogous examples for other datasets we also see different patterns over
measures, but these are not the same as in this example.

The instructor (the first author) presented Box’s M test, with the
caveat of the opening quotation by George Box that the test was
not robust against mild-to-moderate nonnormality, while the
Pillai–Bartlett trace test for mean differences does possess this
robustness.

One student commented that this was akin to recommend-
ing a screening test for lung cancer that was more sensitive to
influenza. Another student asked, “Well, if I run Box’s test and
it shows significance, how can I decide if my MANOVA results
are valid? How can I determine which groups differ in covari-
ance matrices and on which variables?”

These seemed to be perfectly reasonable questions, andwhile
we were aware of the modifications that might account for non-
normality (O’Brien 1992; Tiku and Balakrishnan 1984), these
are not typically available in standard software and therefore
their theory is cold comfort to applied researchers. More impor-
tantly, we were struck with how little information is provided by
the result of such a significance test, regardless of its Type I error
and power properties. What was lacking in the null hypothesis
p-value was any insight into the nature of group differences in
covariance matrices.

The approach we have outlined here stems from the mantras
of exploratory data analysis (EDA) in a multivariate setting:



THE AMERICAN STATISTICIAN 11

The greatest value of a picture is when it forces us to notice what we
never expected to see (Tukey 1977, p. vi).

The purpose of [data] display is comparison (recognition of
phenomena), not numbers (Tukey 1990).

We began with the idea of displaying covariance matrices
directly in terms of data ellipsoids that serve as normal theory
minimally sufficient visual summaries. We mentioned, but did
not illustrate, that classical estimates of S could be replaced by
robust MVE andMCD alternatives in the presence of multivari-
ate outliers.

The simple dot plot (Figure 9) of the components of Box’s
M test answers the first question: How do the groups differ in
covariance matrices? It does more than this, however, because it
suggests that other functions of the eigenvalues of the Si and Sp
might provide alternative measures of homogeneity of covari-
ance matrices (Figure 11), and that their distribution across the
orthogonal dimensions of within-group variation provides valu-
able insight into the properties of these measures and statistical
tests.

A hypothesis–error (HE) plot framework described in the
online supplementary materials provides some answers to the
second question: If the multivariate responses do differ among
groups in their variances and covariances, which responses
contribute to this and how do they differ? There, we formulate
an extension of the univariate Levene–Brown–Forsythe test
to the MANOVA setting, with the property that HE plots and
canonical discriminant HE plots for the question of mean
differences apply directly to the question of homogeneity of
covariance matrices. Pairwise HE plots in variable space show
which responses differ in scatter, and their projection into
canonical space (Figure 2 in the supplementary materials)
provides a convenient 2D representation, often with quite a
simple interpretation.

Finally, we do not fear that this article might attract the
opprobrium that we “flung data onto many canvases to see what
stuck.” To the contrary,wewere struck by the relative consistency
of the resulting plots across these various visual approaches.
When covariance ellipsoids showeddifferences among groups in
variable space or principal components space, we could under-
stand how these differences were reflected in the Box’s M plots.
All of this is muchmore satisfying than a p-value, robust or oth-
erwise.

6. Supplementary Materials

The online supplementary materials describe the HE plot
framework for tests of mean differences and give some fur-
ther examples. We also discuss a multivariate extension of
Levene’s test within this framework. The R packages can-
disc and heplots are freely available from the Comprehen-
sive R Archive Network, http://cran.us.r-project.org/. Complete
R scripts for the Iris, Wine, and Skulls examples are available at
https://mattsigal.github.io/eqcov_supp/ .
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