
PowerPwning: Post-Exploiting By 
Overpowering PowerShell

Joe Bialek



About Me

• Joe Bialek

• Security Engineer

• Twitter: @JosephBialek

• Blog: http://clymb3r.wordpress.com

• GitHub: https://github.com/clymb3r

http://clymb3r.wordpress.com
https://github.com/clymb3r


PowerShell is Awesome

• Provides access to the Win32 API

• Doesn’t write to disk when scripts are run on 
remote computers

• Script runs inside PowerShell.exe or 
WsmProvHost.exe (when run remotely)

– Don’t have to execute suspicious or unsigned 
processes



What I Want To Do With PowerShell

• Run existing tools in PowerShell without 
rewriting them in PowerShell

– Use existing tools but leverage PowerShell’s 
forensic benefits

• Solution: Write a PowerShell script to 
reflectively load and execute PE’s (EXE/DLL) in 
the PowerShell process



How To Load A PE

1. Allocate memory for PE

2. Copy PE headers to memory

3. Copy sections to memory (.text, .data, etc.)

4. Perform “base relocations” on the sections loaded

5. Load DLL’s the PE requires

6. Adjust memory permissions

7. Call the entry function
– For DLL: Calls DllMain which lets the DLL know it is loaded

– For EXE: Function which sets up the process, gets 
command line arguments and calls int main()



DLL Specific Stuff

• After loading DLL, call exported DLL functions

• Remote PowerShell can’t capture “stdout”, 
you won’t see anything your program outputs
– printf

– cout

• To capture output: Make the DLL function 
return a “char*” or “wchar_t*”

• PowerShell can Marshal this pointer to a 
managed string and print the output



Problems Reflectively Loading An EXE: 
Prevent PowerShell From Exiting

• When EXE exits, it calls ExitProcess

– PowerShell is the running process so it is killed by 
ExitProcess

– I want the EXE to exit, not PowerShell

• Solution: 

– Call the EXE entry function in its own thread 

– Overwrite ExitProcess function with a call to 
ExitThread



Assembly To Overwrite ExitProcess

; Set a var to 1, let PS know exe is exiting

mov rbx, 0x4141414141414141

mov [rbx], byte 0x01

; Call exitthread instead of exitprocess

sub rsp, 0xc0

and sp, 0xFFF0 ; Needed for stack alignment

mov rbx, 0x4141414141414141

call rbx



Problems Reflectively Loading An EXE: 
Pass Command Line Arguments

• EXE entry function retrieves command line 
arguments and passes them to “int main(argc, 
argv)”

– Functions which are used to get command line:

• GetCommandLine()

• __getcmdln()

– Function called appears to depend on how the 
EXE was compiled (/MD vs /MDd in Visual Studio)

– Built solutions to deal with both cases



Patch GetCommandLine()

For EXE compiled with Visual Studio as “Multi-
Threaded”:

• Overwrite GetCommandLineA() and 
GetCommandLineW() with shell code to 
return a string I allocate



Assembly to overwrite 
GetCommandLine

; X64 code

mov rax, 0x4141414141414141

ret

; X86 code

mov eax, 0x41414141

ret



Patch __getcmdln()

For EXE compiled with Visual Studio “Multi-
Threaded DLL”:

• The runtime DLL msvcrXXX.dll or 
msvcrXXXd.dll exports the variables __acmdln
and __wcmdln, which are char* and wchar_t*

• Replace these with our own strings we 
allocate using PowerShell

• When the DLL function __getcmdln is called, it 
will parse the strings we set into argc and argv
and return them



Remote Reflective DLL Injection

• Stephen Fewer method: 

– Write DLL bytes AND his reflective DLL loader to 
remote process memory

– CreateRemoteThread for his reflective DLL loader, 
which then reflectively loads the actual DLL

• I can’t write PowerShell code in to a remote 
process, so this method doesn’t work for me



Remote Reflective DLL Injection

• My method:
– Allocate memory in remote process
– Load needed libraries in remote process

• Have to write assembly for remote LoadLibrary and remote 
GetProcAddress functionality

– Stage DLL in the PowerShell process
• Perform relocations and whatnot on the DLL bytes while it is 

in the PowerShell process
• Base relocation calculations are done based on the address 

of memory allocated in the remote process

– Write the bytes to the remote process
– Create a thread to begin DLL execution



Remote LoadLibrary (x64)
; Save rsp and setup stack for function call
push rbx
mov rbx, rsp
sub rsp, 0x20
and sp, 0xffc0

; Call LoadLibraryA
mov rcx, 0x4141414141414141 ; Ptr to string of library, set by PS
mov rdx, 0x4141414141414141 ; Address of LoadLibrary, set by PS
call rdx

mov rdx, 0x4141414141414141 ; Ptr to save result, set by PS
mov [rdx], rax

; Fix stack
mov rsp, rbx
pop rbx
ret



Remote GetProcAddress (x64)
; Save state of rbx and stack
push rbx
mov rbx, rsp

; Set up stack for function call to GetProcAddress
sub rsp, 0x20
and sp, 0xffc0

; Call getprocaddress
mov rcx, 0x4141414141414141 ; DllHandle, set by PS
mov rdx, 0x4141414141414141 ; Ptr to FuncName string, set by PS
mov rax, 0x4141414141414141 ; GetProcAddress address, set by PS
call rax

; Store the result
mov rcx, 0x4141414141414141 ; Ptr to buffer to save result, set by PS
mov [rcx], rax

; Restore stack
mov rsp, rbx
pop rbx
ret



Demos



Detection & Prevention

• PowerShell remoting requires administrator 
access

• PowerShell pipeline logging MAY help detection

• Constrained run spaces help limit the power of 
PowerShell

• Standard stuff like firewalls, limiting powerful 
accounts, etc.. will help prevent the remote 
aspect

• Machine wide profile to log actions to a transcript



Closing Thoughts

• This is NOT a vulnerability!
– PowerShell is a Turing complete programming 

language, it can do all this by design

– Basically any programming language can be used 
to create similar functionality

• PowerShell is a great way to manage Windows 
systems and has good security

• Don’t let this talk scare you away from 
PowerShell



Links

• Invoke-ReflectivePEInjection: 
https://github.com/clymb3r/powershell

– Also part of PowerSploit

• Blog: http://clymb3r.wordpress.com

https://github.com/clymb3r/powershell
https://clymb3r.wordpress.com


References

MSDN documentation on PE’s and DLL loading:

• http://msdn.microsoft.com/en-us/magazine/bb985992.aspx

• http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

• http://msdn.microsoft.com/library/windows/hardware/gg463125

Other reflective loaders:

• https://github.com/stephenfewer/ReflectiveDLLInjection

• http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

Good PowerShell related blogs:

• http://www.exploit-monday.com/

• http://www.leeholmes.com/blog/

http://msdn.microsoft.com/en-us/magazine/bb985992.aspx
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://msdn.microsoft.com/library/windows/hardware/gg463125
https://github.com/stephenfewer/ReflectiveDLLInjection
http://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
http://www.exploit-monday.com/
http://www.leeholmes.com/blog/

