A number n is said to be an Abundant Number if the sum of all the proper divisors of the number denoted by sum(n) is greater than the value of the number n. And the difference between these two values is called abundance.
Mathematically, if the below condition holds the number is said to be an Abundant number:
sum(n)> n
abundance = sum(n) - n
sum(n): aliquot sum - The sum of all proper divisors of n
Given a number n, our task is to find if this number is an Abundant number or not.
The first few Abundant Numbers are: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66 .....

Examples:
Input: 21
Output: NO
Input: 12
Output: YES
Input: 17
Output: NO
Method 1: A Simple solution is to iterate all the numbers from 1 to n-1 and check if the number divides n and calculate the sum. Check if this sum is greater than n or not.
C++
// C++ program to find if a given
// number is Abundant number or not.
#include <bits/stdc++.h>
using namespace std;
// Returns true if the given number is Abundant
bool isAbundantNumber(int n)
{
// To store the sum of divisors
int sum = 0;
// Loop through the numbers [1,n-1]
for (int i = 1; i < n; i++) {
if (n % i == 0) {
sum += i;
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
}
else {
return false;
}
}
// Driver program
int main()
{
// Function call
if (isAbundantNumber(12)) {
cout << "YES" << endl;
;
}
else {
cout << "NO" << endl;
;
}
}
// This code is contributed by phasing17
Java
// Java program to find if a given
// number is Abundant number or not.
import java.io.*;
import java.util.*;
class GFG {
// Returns true if the given number is Abundant
public static boolean isAbundantNumber(int n)
{
// To store the sum of divisors
int sum = 0;
// Loop through the numbers [1,n-1]
for (int i = 1; i < n; i++) {
if (n % i == 0) {
sum += i;
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
}
else {
return false;
}
}
// Driver program
public static void main(String[] args)
{
// Function call
if (isAbundantNumber(12)) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
// This code is contributed by shruti456rawal
Python3
# code
n = 12
s = 0
# iterating loop n times
for i in range(1, n):
# finding proper divisors
if n % i == 0:
# adding proper divisors to the sum s
s += i
# checking if sum is greater than the
# given number then it is called
# anundant so print yes otherwise no
if s > n:
print("Yes")
else:
print("No")
# this code is contributed by gangarajula laxmi
C#
// C# program to find if a given
// number is Abundant number or not.
using System;
class GFG {
// Returns true if the given number is Abundant
public static bool isAbundantNumber(int n)
{
// To store the sum of divisors
int sum = 0;
// Loop through the numbers [1,n-1]
for (int i = 1; i < n; i++) {
if (n % i == 0) {
sum += i;
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
}
else {
return false;
}
}
// Driver program
public static void Main(string[] args)
{
// Function call
if (isAbundantNumber(12)) {
Console.WriteLine("YES");
}
else {
Console.WriteLine("NO");
}
}
}
// This code is contributed by phasing17
JavaScript
<script>
// JavaScript code for the above approach
// Returns true if the given number is Abundant
function isAbundantNumber(n) {
// To store the sum of divisors
let sum = 0;
// Loop through the numbers [1,n-1]
for (let i = 1; i < n; i++) {
if (n % i == 0) {
sum += i;
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
}
else {
return false;
}
}
// Driver program
// Function call
if (isAbundantNumber(12)) {
document.write("YES");
}
else {
document.write("NO");
}
// This code is contributed by Potta Lokesh
</script>
PHP
<?php
$n=12;
$s=0;
// Loop through the numbers [1,n-1]
for ($i = 1; $i < $n; $i++) {
if ($n % $i == 0) {
$s += $i;
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if ($s > $n) {
echo "Yes" ;
}
else {
echo "No";
}
// This code is contributed by laxmigangarajula03
?>
Time Complexity: O(n) for a given number n.
Auxiliary Space: O(1)
Optimized Solution:
If we observe carefully, the divisors of the number n are present in pairs. For example if n = 100, then all the pairs of divisors are: (1,100), (2,50), (4,25), (5,20), (10,10)
Using this fact we can speed up our program. While checking divisors we will have to be careful if there are two equal divisors as in the case of (10, 10). In such a case, we will take only one of them in the calculation of the sum.
Subtract the number n from the sum of all divisors to get the sum of proper divisors.
C++
// An Optimized Solution to check Abundant Number
#include <bits/stdc++.h>
using namespace std;
// Function to calculate sum of divisors
int getSum(int n)
{
int sum = 0;
// Note that this loop runs till square root
// of n
for (int i=1; i<=sqrt(n); i++)
{
if (n%i==0)
{
// If divisors are equal,take only one
// of them
if (n/i == i)
sum = sum + i;
else // Otherwise take both
{
sum = sum + i;
sum = sum + (n / i);
}
}
}
// calculate sum of all proper divisors only
sum = sum - n;
return sum;
}
// Function to check Abundant Number
bool checkAbundant(int n)
{
// Return true if sum of divisors is greater
// than n.
return (getSum(n) > n);
}
/* Driver program to test above function */
int main()
{
checkAbundant(12)? cout << "YES\n" : cout << "NO\n";
checkAbundant(15)? cout << "YES\n" : cout << "NO\n";
return 0;
}
Java
// An Optimized Solution to check Abundant Number
// in JAVA
import java.io.*;
import java.math.*;
// Function to calculate sum of divisors
class GFG{
static int getSum(int n)
{
int sum = 0;
// Note that this loop runs till square
// root of n
for (int i=1; i<=(Math.sqrt(n)); i++)
{
if (n%i==0)
{
// If divisors are equal,take only
// one of them
if (n/i == i)
sum = sum + i;
else // Otherwise take both
{
sum = sum + i;
sum = sum + (n / i);
}
}
}
// calculate sum of all proper divisors
// only
sum = sum - n;
return sum;
}
// Function to check Abundant Number
static boolean checkAbundant(int n)
{
// Return true if sum of divisors is
// greater than n.
return (getSum(n) > n);
}
/* Driver program to test above function */
public static void main(String args[])throws
IOException
{
if(checkAbundant(12))
System.out.println("YES");
else
System.out.println("NO");
if(checkAbundant(15))
System.out.println("YES");
else
System.out.println("NO");
}
}
// This code is contributed by Nikita Tiwari.
Python3
# An Optimized Solution to check Abundant Number
# in PYTHON
import math
# Function to calculate sum of divisors
def getSum(n) :
sum = 0
# Note that this loop runs till square root
# of n
i = 1
while i <= (math.sqrt(n)) :
if n%i == 0 :
# If divisors are equal,take only one
# of them
if n//i == i :
sum = sum + i
else : # Otherwise take both
sum = sum + i
sum = sum + (n // i )
i = i + 1
# calculate sum of all proper divisors only
sum = sum - n
return sum
# Function to check Abundant Number
def checkAbundant(n) :
# Return true if sum of divisors is greater
# than n.
if (getSum(n) > n) :
return 1
else :
return 0
# Driver program to test above function */
if(checkAbundant(12) == 1) :
print ("YES")
else :
print ("NO")
if(checkAbundant(15) == 1) :
print ("YES")
else :
print ("NO")
# This code is contributed by Nikita Tiwari.
C#
// An Optimized Solution to check Abundant Number
// in C#
// Function to calculate sum of divisors
using System;
class GFG {
// Function to calculate sum of divisors
static int getSum(int n)
{
int sum = 0;
// Note that this loop runs till square
// root of n
for (int i = 1; i <= (Math.Sqrt(n)); i++) {
if (n % i == 0) {
// If divisors are equal, take only
// one of them
if (n / i == i)
sum = sum + i;
else // Otherwise take both
{
sum = sum + i;
sum = sum + (n / i);
}
}
}
// calculate sum of all proper divisors
// only
sum = sum - n;
return sum;
}
// Function to check Abundant Number
static bool checkAbundant(int n)
{
// Return true if sum of divisors is
// greater than n.
return (getSum(n) > n);
}
/* Driver program to test above function */
public static void Main()
{
if (checkAbundant(12))
Console.WriteLine("YES");
else
Console.WriteLine("NO");
if (checkAbundant(15))
Console.WriteLine("YES");
else
Console.WriteLine("NO");
}
}
// This code is contributed by vt_m.
JavaScript
<script>
// Javascript program for an Optimized
// solution to check Abundant Number
// Function to calculate
// sum of divisors
function getSum(n)
{
let sum = 0;
// Note that this loop runs
// till square root of n
for (let i = 1; i <= Math.sqrt(n); i++)
{
if (n % i == 0)
{
// If divisors are equal,take
// only one of them
if (n / i == i)
sum = sum + i;
// Otherwise take both
else
{
sum = sum + i;
sum = sum + (n / i);
}
}
}
// calculate sum of all
// proper divisors only
sum = sum - n;
return sum;
}
// Function to check Abundant Number
function checkAbundant(n)
{
// Return true if sum of
// divisors is greater than n.
return (getSum(n) > n);
}
// Driver Code
let k = checkAbundant(12) ? "YES<br>" : "NO<br>";
document.write(k);
k = checkAbundant(15) ? "YES<br>" : "NO<br>";
document.write(k);
// This code is contributed by _saurabh_jaiswal
</script>
PHP
<?php
// PHP program for an Optimized
// solution to check Abundant Number
// Function to calculate
// sum of divisors
function getSum($n)
{
$sum = 0;
// Note that this loop runs
// till square root of n
for ($i = 1; $i <= sqrt($n); $i++)
{
if ($n % $i == 0)
{
// If divisors are equal,take
// only one of them
if ($n / $i == $i)
$sum = $sum + $i;
// Otherwise take both
else
{
$sum = $sum + $i;
$sum = $sum + ($n / $i);
}
}
}
// calculate sum of all
// proper divisors only
$sum = $sum - $n;
return $sum;
}
// Function to check Abundant Number
function checkAbundant($n)
{
// Return true if sum of
// divisors is greater than n.
return (getSum($n) > $n);
}
// Driver Code
$k = checkAbundant(12) ? "YES\n" : "NO\n";
echo($k);
$k = checkAbundant(15) ? "YES\n" : "NO\n";
echo($k);
// This code is contributed by Ajit.
?>
Time Complexity: O(sqrt(n))
Auxiliary Space: O(1)
Approach 3: Dynamic Programming:
The approach uses dynamic programming to determine if a number is abundant or not.
- The idea is to create a boolean array of size n+1, where n is the number whose abundance needs to be checked. This boolean array is used to store the result of whether a number is abundant or not. Initially, all the elements in the array are set to false.
- Then, the program loops through all the numbers from 1 to n, and for each number, it calculates the sum of its divisors. If the sum of divisors is greater than the number itself, the number is marked as abundant in the boolean array.
- Finally, the function returns the value at index n in the boolean array, which tells whether the number n is abundant or not.
- This approach uses dynamic programming because it stores the results of previously computed subproblems in the boolean array and uses them to compute the abundance of larger numbers. This avoids redundant computations and makes the program more efficient.
Here is the Code of above approach:
C++
#include <iostream>
#include <vector>
using namespace std;
// Returns true if the given number is Abundant
bool isAbundantNumber(int n)
{
// To store the sum of divisors
int sum = 1;
// Loop through the numbers [2,sqrt(n)]
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
if (i * i != n) {
sum += i + n / i;
} else {
sum += i;
}
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
}
else {
return false;
}
}
// Function to find all abundant numbers up to n using DP
vector<int> getAllAbundantNumbers(int n)
{
vector<int> abundantNumbers;
vector<int> dp(n + 1, 0);
// Calculate the sum of divisors for all numbers [1, n]
for (int i = 1; i <= n; i++) {
for (int j = i * 2; j <= n; j += i) {
dp[j] += i;
}
}
// Find all abundant numbers up to n
for (int i = 12; i <= n; i++) {
if (dp[i] > i) {
abundantNumbers.push_back(i);
}
}
return abundantNumbers;
}
// Driver program
int main()
{
// Check if 12 is an abundant number
if (isAbundantNumber(12)) {
cout << "YES" << endl;
} else {
cout << "NO" << endl;
}
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class GFG {
// Returns true if the given number is Abundant
static boolean isAbundantNumber(int n) {
// To store the sum of divisors
int sum = 1;
// Loop through the numbers [2, sqrt(n)]
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
if (i * i != n) {
sum += i + n / i;
} else {
sum += i;
}
}
}
// A number n is said to be Abundant Number if
// the sum of all the proper divisors of the number
// is greater than the value of the number n.
return sum > n;
}
// Function to find all abundant numbers up to n using DP
static List<Integer> getAllAbundantNumbers(int n) {
List<Integer> abundantNumbers = new ArrayList<>();
int[] dp = new int[n + 1];
// Calculate the sum of divisors for all numbers [1, n]
for (int i = 1; i <= n; i++) {
for (int j = i * 2; j <= n; j += i) {
dp[j] += i;
}
}
// Find all abundant numbers up to n
for (int i = 12; i <= n; i++) {
if (dp[i] > i) {
abundantNumbers.add(i);
}
}
return abundantNumbers;
}
// Driver program
public static void main(String[] args) {
// Check if 12 is an abundant number
if (isAbundantNumber(12)) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
}
// by phasing17
Python3
# Function to check if the given number is Abundant
def isAbundantNumber(n):
# To store the sum of divisors
sum_divisors = 1
# Loop through the numbers [2, sqrt(n)]
i = 2
while i * i <= n:
if n % i == 0:
if i * i != n:
sum_divisors += i + n // i
else:
sum_divisors += i
i += 1
# A number n is said to be Abundant Number if
# the sum of all proper divisors of the number
# is greater than the value of the number n.
if sum_divisors > n:
return True
else:
return False
# Function to find all abundant numbers up to n using DP
def getAllAbundantNumbers(n):
abundantNumbers = []
dp = [0] * (n + 1)
# Calculate the sum of divisors for all numbers [1, n]
for i in range(1, n + 1):
for j in range(i * 2, n + 1, i):
dp[j] += i
# Find all abundant numbers up to n
for i in range(12, n + 1):
if dp[i] > i:
abundantNumbers.append(i)
return abundantNumbers
# Driver program
# Check if 12 is an abundant number
if isAbundantNumber(12):
print("YES")
else:
print("NO")
C#
using System;
using System.Collections.Generic;
class Program
{
// Returns true if the given number is Abundant
static bool IsAbundantNumber(int n)
{
// To store the sum of divisors
int sum = 1;
// Loop through the numbers [2,sqrt(n)]
for (int i = 2; i * i <= n; i++)
{
if (n % i == 0)
{
if (i * i != n)
{
sum += i + n / i;
}
else
{
sum += i;
}
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
return sum > n;
}
// Function to find all abundant numbers up to n using DP
static List<int> GetAllAbundantNumbers(int n)
{
List<int> abundantNumbers = new List<int>();
int[] dp = new int[n + 1];
// Calculate the sum of divisors for all numbers [1, n]
for (int i = 1; i <= n; i++)
{
for (int j = i * 2; j <= n; j += i)
{
dp[j] += i;
}
}
// Find all abundant numbers up to n
for (int i = 12; i <= n; i++)
{
if (dp[i] > i)
{
abundantNumbers.Add(i);
}
}
return abundantNumbers;
}
// Driver program
static void Main()
{
// Check if 12 is an abundant number
if (IsAbundantNumber(12))
{
Console.WriteLine("YES");
}
else
{
Console.WriteLine("NO");
}
}
}
JavaScript
// Returns true if the given number is Abundant
function isAbundantNumber(n) {
// To store the sum of divisors
let sum = 1;
// Loop through the numbers [2,sqrt(n)]
for (let i = 2; i * i <= n; i++) {
if (n % i == 0) {
if (i * i != n) {
sum += i + n / i;
} else {
sum += i;
}
}
}
// A number n is said to be Abundant Number if
// sum of all the proper divisors of the number
// is greater than the value of the number n.
if (sum > n) {
return true;
} else {
return false;
}
}
// Function to find all abundant numbers up to n using DP
function getAllAbundantNumbers(n) {
let abundantNumbers = [];
let dp = new Array(n + 1).fill(0);
// Calculate the sum of divisors for all numbers [1, n]
for (let i = 1; i <= n; i++) {
for (let j = i * 2; j <= n; j += i) {
dp[j] += i;
}
}
// Find all abundant numbers up to n
for (let i = 12; i <= n; i++) {
if (dp[i] > i) {
abundantNumbers.push(i);
}
}
return abundantNumbers;
}
// Driver program
// Check if 12 is an abundant number
if (isAbundantNumber(12)) {
console.log("YES");
} else {
console.log("NO");
}
Output
YES
Time Complexity: O(n*sqrt(n)). for a given number n.
Auxiliary Space: O(N)
References:
https://en.wikipedia.org/wiki/Abundant_number
-"
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem