Check if a number is Bleak
Last Updated :
17 Nov, 2021
A number 'n' is called Bleak if it cannot be represented as sum of a positive number x and set bit count in x, i.e., x + countSetBits(x) is not equal to n for any non-negative number x.
Examples :
Input : n = 3
Output : false
3 is not Bleak as it can be represented
as 2 + countSetBits(2).
Input : n = 4
Output : true
4 is t Bleak as it cannot be represented
as sum of a number x and countSetBits(x)
for any number x.
Method 1 (Simple)
bool isBleak(n)
1) Consider all numbers smaller than n
a) If x + countSetBits(x) == n
return false
2) Return true
Below is the implementation of the simple approach.
C++
// A simple C++ program to check Bleak Number
#include <bits/stdc++.h>
using namespace std;
/* Function to get no of set bits in binary
representation of passed binary no. */
int countSetBits(int x)
{
unsigned int count = 0;
while (x) {
x &= (x - 1);
count++;
}
return count;
}
// Returns true if n is Bleak
bool isBleak(int n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for (int x = 1; x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
// Driver code
int main()
{
isBleak(3) ? cout << "Yes\n" : cout << "No\n";
isBleak(4) ? cout << "Yes\n" : cout << "No\n";
return 0;
}
Java
// A simple Java program to check Bleak Number
import java.io.*;
class GFG {
/* Function to get no of set bits in binary
representation of passed binary no. */
static int countSetBits(int x)
{
int count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// Returns true if n is Bleak
static boolean isBleak(int n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for (int x = 1; x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
// Driver code
public static void main(String args[])
{
if (isBleak(3))
System.out.println("Yes");
else
System.out.println("No");
if (isBleak(4))
System.out.println("Yes");
else
System.out.println("No");
}
}
/*This code is contributed by Nikita Tiwari.*/
Python3
# A simple Python 3 program
# to check Bleak Number
# Function to get no of set
# bits in binary
# representation of passed
# binary no.
def countSetBits(x) :
count = 0
while (x) :
x = x & (x-1)
count = count + 1
return count
# Returns true if n
# is Bleak
def isBleak(n) :
# Check for all numbers 'x'
# smaller than n. If x +
# countSetBits(x) becomes
# n, then n can't be Bleak.
for x in range(1, n) :
if (x + countSetBits(x) == n) :
return False
return True
# Driver code
if(isBleak(3)) :
print( "Yes")
else :
print("No")
if(isBleak(4)) :
print("Yes")
else :
print( "No")
# This code is contributed by Nikita Tiwari.
C#
// A simple C# program to check
// Bleak Number
using System;
class GFG {
/* Function to get no of set
bits in binary representation
of passed binary no. */
static int countSetBits(int x)
{
int count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// Returns true if n is Bleak
static bool isBleak(int n)
{
// Check for all numbers
// 'x' smaller than n. If
// x + countSetBits(x)
// becomes n, then n can't
// be Bleak
for (int x = 1; x < n; x++)
if (x + countSetBits(x)
== n)
return false;
return true;
}
// Driver code
public static void Main()
{
if (isBleak(3))
Console.Write("Yes");
else
Console.WriteLine("No");
if (isBleak(4))
Console.Write("Yes");
else
Console.Write("No");
}
}
// This code is contributed by
// Nitin mittal
PHP
<?php
// A simple PHP program
// to check Bleak Number
// Function to get no of
// set bits in binary
// representation of
// passed binary no.
function countSetBits( $x)
{
$count = 0;
while ($x)
{
$x &= ($x - 1);
$count++;
}
return $count;
}
// Returns true if n is Bleak
function isBleak( $n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for($x = 1; $x < $n; $x++)
if ($x + countSetBits($x) == $n)
return false;
return true;
}
// Driver code
if(isBleak(3))
echo "Yes\n" ;
else
echo "No\n";
if(isBleak(4))
echo "Yes\n" ;
else
echo "No\n";
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// JavaScript program to check Bleak Number
/* Function to get no of set bits in binary
representation of passed binary no. */
function countSetBits(x)
{
let count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// Returns true if n is Bleak
function isBleak(n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for (let x = 1; x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
// Driver Code
if (isBleak(3))
document.write("Yes" + "<br/>");
else
document.write("No" + "<br/>");
if (isBleak(4))
document.write("Yes" + "<br/>");
else
document.write("No" + "<br/>");
</script>
Output :
No
Yes
Time complexity of above solution is O(n Log n).
Auxiliary Space: O(1)
Method 2 (Efficient)
The idea is based on the fact that the largest count of set bits in any number smaller than n cannot exceed ceiling of Log2n. So we need to check only numbers from range n - ceilingLog2(n) to n.
bool isBleak(n)
1) Consider all numbers n - ceiling(Log2n) to n-1
a) If x + countSetBits(x) == n
return false
2) Return true
Below is the implementation of the idea.
C++
// An efficient C++ program to check Bleak Number
#include <bits/stdc++.h>
using namespace std;
/* Function to get no of set bits in binary
representation of passed binary no. */
int countSetBits(int x)
{
unsigned int count = 0;
while (x) {
x &= (x - 1);
count++;
}
return count;
}
// A function to return ceiling of log x
// in base 2. For example, it returns 3
// for 8 and 4 for 9.
int ceilLog2(int x)
{
int count = 0;
x--;
while (x > 0) {
x = x >> 1;
count++;
}
return count;
}
// Returns true if n is Bleak
bool isBleak(int n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for (int x = n - ceilLog2(n); x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
// Driver code
int main()
{
isBleak(3) ? cout << "Yes\n" : cout << "No\n";
isBleak(4) ? cout << "Yes\n" : cout << "No\n";
return 0;
}
Java
// An efficient Java program to
// check Bleak Number
import java.io.*;
class GFG {
/* Function to get no of set bits in
binary representation of passed binary
no. */
static int countSetBits(int x)
{
int count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// A function to return ceiling of log x
// in base 2. For example, it returns 3
// for 8 and 4 for 9.
static int ceilLog2(int x)
{
int count = 0;
x--;
while (x > 0) {
x = x >> 1;
count++;
}
return count;
}
// Returns true if n is Bleak
static boolean isBleak(int n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for (int x = n - ceilLog2(n); x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
// Driver code
public static void main(String[] args)
{
if (isBleak(3))
System.out.println("Yes");
else
System.out.println("No");
if (isBleak(4))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by Prerna Saini
Python3
# An efficient Python 3 program
# to check Bleak Number
import math
# Function to get no of set
# bits in binary representation
# of passed binary no.
def countSetBits(x) :
count = 0
while (x) :
x = x & (x - 1)
count = count + 1
return count
# A function to return ceiling
# of log x in base 2. For
# example, it returns 3 for 8
# and 4 for 9.
def ceilLog2(x) :
count = 0
x = x - 1
while (x > 0) :
x = x>>1
count = count + 1
return count
# Returns true if n is Bleak
def isBleak(n) :
# Check for all numbers 'x'
# smaller than n. If x +
# countSetBits(x) becomes n,
# then n can't be Bleak
for x in range ((n - ceilLog2(n)), n) :
if (x + countSetBits(x) == n) :
return False
return True
# Driver code
if(isBleak(3)) :
print("Yes")
else :
print( "No")
if(isBleak(4)) :
print("Yes")
else :
print("No")
# This code is contributed by Nikita Tiwari.
C#
// An efficient C# program to check
// Bleak Number
using System;
class GFG {
/* Function to get no of set
bits in binary representation
of passed binary no. */
static int countSetBits(int x)
{
int count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// A function to return ceiling
// of log x in base 2. For
// example, it returns 3 for 8
// and 4 for 9.
static int ceilLog2(int x)
{
int count = 0;
x--;
while (x > 0) {
x = x >> 1;
count++;
}
return count;
}
// Returns true if n is Bleak
static bool isBleak(int n)
{
// Check for all numbers
// 'x' smaller than n. If
// x + countSetBits(x)
// becomes n, then n
// can't be Bleak
for (int x = n - ceilLog2(n);
x < n; x++)
if (x + countSetBits(x)
== n)
return false;
return true;
}
// Driver code
public static void Main()
{
if (isBleak(3))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
if (isBleak(4))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by anuj_67.
PHP
<?php
// An efficient PHP program
// to check Bleak Number
/* Function to get no of set
bits in binary representation
of passed binary no. */
function countSetBits( $x)
{
$count = 0;
while ($x)
{
$x &= ($x - 1);
$count++;
}
return $count;
}
// A function to return ceiling of log x
// in base 2. For example, it returns 3
// for 8 and 4 for 9.
function ceilLog2( $x)
{
$count = 0;
$x--;
while ($x > 0)
{
$x = $x >> 1;
$count++;
}
return $count;
}
// Returns true if n is Bleak
function isBleak( $n)
{
// Check for all numbers 'x' smaller
// than n. If x + countSetBits(x)
// becomes n, then n can't be Bleak
for ($x = $n - ceilLog2($n); $x < $n; $x++)
if ($x + countSetBits($x) == $n)
return false;
return true;
}
// Driver code
if(isBleak(3))
echo "Yes\n" ;
else
echo "No\n";
if(isBleak(4))
echo "Yes\n" ;
else
echo "No\n";
// This code is contributed by anuj_67
?>
JavaScript
<script>
// An efficient JavaScript
// program to check Bleak Number
/* Function to get no of set
bits in binary representation
of passed binary no. */
function countSetBits(x)
{
let count = 0;
while (x != 0) {
x &= (x - 1);
count++;
}
return count;
}
// A function to return ceiling
// of log x in base 2. For
// example, it returns 3 for 8
// and 4 for 9.
function ceilLog2(x)
{
let count = 0;
x--;
while (x > 0) {
x = x >> 1;
count++;
}
return count;
}
// Returns true if n is Bleak
function isBleak(n)
{
// Check for all numbers
// 'x' smaller than n. If
// x + countSetBits(x)
// becomes n, then n
// can't be Bleak
for (let x = n - ceilLog2(n); x < n; x++)
if (x + countSetBits(x) == n)
return false;
return true;
}
if (isBleak(3))
document.write("Yes" + "</br>");
else
document.write("No" + "</br>");
if (isBleak(4))
document.write("Yes" + "</br>");
else
document.write("No" + "</br>");
</script>
Output:
No
Yes
Time Complexity: O(Log n * Log n)
Auxiliary Space: O(1)
Note: In GCC, we can directly count set bits using __builtin_popcount(). So we can avoid a separate function for counting set bits.
CPP
// C++ program to demonstrate __builtin_popcount()
#include <iostream>
using namespace std;
int main()
{
cout << __builtin_popcount(4) << endl;
cout << __builtin_popcount(15);
return 0;
}
Java
// Java program to demonstrate Integer.bitCount()
import java.util.*;
class GFG{
public static void main(String[] args)
{
System.out.print(Integer.bitCount(4) +"\n");
System.out.print(Integer.bitCount(15));
}
}
// This code is contributed by umadevi9616
Python3
# Python program to demonstrate Integer.bitCount()
def bitsoncount(i):
assert 0 <= i < 0x100000000
i = i - ((i >> 1) & 0x55555555)
i = (i & 0x33333333) + ((i >> 2) & 0x33333333)
return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24
# Driver code
if __name__ == '__main__':
x = 4;
y = 15;
print(bitsoncount(x));
print(bitsoncount(y));
# This code is contributed by umadevi9616
C#
// C# program to demonstrate int.bitCount()
using System;
public class GFG{
public static int bitCount (int n) {
n = n - ((n >> 1) & 0x55555555);
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}
public static void Main(String[] args)
{
Console.WriteLine(bitCount(4));
Console.WriteLine(bitCount(15));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// javascript program to demonstrate int.bitCount()
function bitCount ( n) {
n = n - ((n >> 1) & 0x55555555);
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
}
document.write(bitCount(4)+"<br/>");
document.write(bitCount(15));
// This code is contributed by gauravrajput1
</script>
Output :
1
4
Time Complexity: O(log n)
Auxiliary Space: O(1)
Similar Reads
Bitwise Algorithms Bitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Introduction to Bitwise Algorithms - Data Structures and Algorithms Tutorial Bit stands for binary digit. A bit is the basic unit of information and can only have one of two possible values that is 0 or 1. In our world, we usually with numbers using the decimal base. In other words. we use the digit 0 to 9 However, there are other number representations that can be quite use
15+ min read
Bitwise Operators in C In C, bitwise operators are used to perform operations directly on the binary representations of numbers. These operators work by manipulating individual bits (0s and 1s) in a number.The following 6 operators are bitwise operators (also known as bit operators as they work at the bit-level). They are
6 min read
Bitwise Operators in Java In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming.There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level. T
6 min read
Python Bitwise Operators Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis
5 min read
JavaScript Bitwise Operators In JavaScript, a number is stored as a 64-bit floating-point number but bitwise operations are performed on a 32-bit binary number. To perform a bit-operation, JavaScript converts the number into a 32-bit binary number (signed) and performs the operation and converts back the result to a 64-bit numb
5 min read
All about Bit Manipulation Bit Manipulation is a technique used in a variety of problems to get the solution in an optimized way. This technique is very effective from a Competitive Programming point of view. It is all about Bitwise Operators which directly works upon binary numbers or bits of numbers that help the implementa
14 min read
What is Endianness? Big-Endian & Little-Endian Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as cert
5 min read
Bits manipulation (Important tactics) Prerequisites: Bitwise operators in C, Bitwise Hacks for Competitive Programming, Bit Tricks for Competitive Programming Table of Contents Compute XOR from 1 to n (direct method)Count of numbers (x) smaller than or equal to n such that n+x = n^xHow to know if a number is a power of 2?Find XOR of all
15+ min read
Easy Problems on Bit Manipulations and Bitwise Algorithms
Binary representation of a given numberGiven an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length.Examples: Input: n = 2Output: 00000000000000000000000000000010Input: n = 0Output: 000000000000
6 min read
Count set bits in an integerWrite an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Add two bit stringsGiven two binary strings s1 and s2 consisting of only 0s and 1s. Find the resultant string after adding the two Binary Strings.Note: The input strings may contain leading zeros but the output string should not have any leading zeros.Examples:Input: s1 = "1101", s2 = "111"Output: 10100Explanation: "1
1 min read
Turn off the rightmost set bitGiven an integer n, turn remove turn off the rightmost set bit in it. Input: 12Output: 8Explanation : Binary representation of 12 is 00...01100. If we turn of the rightmost set bit, we get 00...01000 which is binary representation of 8Input: 7 Output: 6 Explanation : Binary representation for 7 is 0
7 min read
Rotate bits of a numberGiven a 32-bit integer n and an integer d, rotate the binary representation of n by d positions in both left and right directions. After each rotation, convert the result back to its decimal representation and return both values in an array as [left rotation, right rotation].Note: A rotation (or cir
7 min read
Compute modulus division by a power-of-2-numberGiven two numbers n and d where d is a power of 2 number, the task is to perform n modulo d without the division and modulo operators.Input: 6 4Output: 2 Explanation: As 6%4 = 2Input: 12 8Output: 4Explanation: As 12%8 = 4Input: 10 2Output: 0Explanation: As 10%2 = 0Approach:The idea is to leverage bi
3 min read
Find the Number Occurring Odd Number of TimesGiven an array of positive integers. All numbers occur an even number of times except one number which occurs an odd number of times. Find the number in O(n) time & constant space. Examples : Input : arr = {1, 2, 3, 2, 3, 1, 3}Output : 3 Input : arr = {5, 7, 2, 7, 5, 2, 5}Output : 5 Recommended
12 min read
Program to find whether a given number is power of 2Given a positive integer n, the task is to find if it is a power of 2 or not.Examples: Input : n = 16Output : YesExplanation: 24 = 16Input : n = 42Output : NoExplanation: 42 is not a power of 2Input : n = 1Output : YesExplanation: 20 = 1Approach 1: Using Log - O(1) time and O(1) spaceThe idea is to
12 min read
Find position of the only set bitGiven a number n containing only 1 set bit in its binary representation, the task is to find the position of the only set bit. If there are 0 or more than 1 set bits, then return -1. Note: Position of set bit '1' should be counted starting with 1 from the LSB side in the binary representation of the
8 min read
Check for Integer OverflowGiven two integers a and b. The task is to design a function that adds two integers and detects overflow during the addition. If the sum does not cause an overflow, return their sum. Otherwise, return -1 to indicate an overflow.Note: You cannot use type casting to a larger data type to check for ove
7 min read
Find XOR of two number without using XOR operatorGiven two integers, the task is to find XOR of them without using the XOR operator.Examples : Input: x = 1, y = 2Output: 3Input: x = 3, y = 5Output: 6Approach - Checking each bit - O(log n) time and O(1) spaceA Simple Solution is to traverse all bits one by one. For every pair of bits, check if both
8 min read
Check if two numbers are equal without using arithmetic and comparison operatorsGiven two numbers, the task is to check if two numbers are equal without using Arithmetic and Comparison Operators or String functions. Method 1 : The idea is to use XOR operator. XOR of two numbers is 0 if the numbers are the same, otherwise non-zero. C++ // C++ program to check if two numbers // a
8 min read
Detect if two integers have opposite signsGiven two integers a and b, the task is to determine whether they have opposite signs. Return true if the signs of the two numbers are different and false otherwise.Examples:Input: a = -5, b = 10Output: trueExplanation: One number is negative and the other is positive, so their signs are different.I
9 min read
Swap Two Numbers Without Using Third VariableGiven two variables a and y, swap two variables without using a third variable. Examples: Input: a = 2, b = 3Output: a = 3, b = 2Input: a = 20, b = 0Output: a = 0, b = 20Input: a = 10, b = 10Output: a = 10, b = 10Table of ContentUsing Arithmetic OperatorsUsing Bitwise XORBuilt-in SwapUsing Arithmeti
6 min read
Russian Peasant (Multiply two numbers using bitwise operators)Given two integers a and b, the task is to multiply them without using the multiplication operator. Instead of that, use the Russian Peasant Algorithm.Examples:Input: a = 2, b = 5Output: 10Explanation: Product of 2 and 5 is 10.Input: a = 6, b = 9Output: 54Explanation: Product of 6 and 9 is 54.Input:
4 min read