Open In App

Class 12 RD Sharma Solutions - Chapter 10 Differentiability - Exercise 10.1

Last Updated : 23 Aug, 2024
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Question 1. Show that f(x) = |x – 3| is continuous but not differentiable at x = 3.

Solution:

f(x) = |x – 3| = \begin{cases}–(x – 3)\ \ \ , x<3\\x – 3\ \ \ \ \ \ \ \   , x≥3\end{cases}

f(3) = 3 – 3 = 0

LHL = lim_{x\to3^-}f(x)   

= lim_{h\to0}f(3-h)

= lim_{h\to0}(h)

= 0

RHL = lim_{x\to3^+}f(x)

= lim_{h\to0}f(3+h)

=  lim_{h\to0}(h)

= 0

Since LHL = RHL, f(x) is continuous at x = 3.

Now, LHD at (x = 3) = lim_{x\to3^-}\frac{f(x)-f(3)}{x-3}

= lim_{h\to0}\frac{h}{-h}

= –1

RHD at (x = 3) = lim_{x\to3^+}\frac{f(x)-f(3)}{x-3}

= lim_{h\to0}\frac{h}{h}

= 1

Since (LHD at x = 3) ≠ (RHD at x = 3)

f(x) is continuous but not differentiable at x =3.

Question 2. Show that f (x) = x1/3 is not differentiable at x = 0.

Solution:

(LHD at x = 0) = lim_{x\to0^-}\frac{f(x)-f(0)}{x-0}

 = lim_{h\to0}\frac{f(0-h)-f(0)}{0-h-0}

= lim_{h\to0}(-1)^{-2/3}h^{-2/3}

= Undefined

(RHD at x = 0) = lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{f(0+h)-f(0)}{0+h-0}

= lim_{h\to0}h^{-2/3}

= Undefined

Clearly LHD and RHD do not exist at 0.

f(x) is not differentiable at x = 0.

Question 3. Show that f(x) = \begin{cases}12x-13,x≤3\\2x^2+5,x>3\end{cases} is differentiable at x = 3.

Solution:

(LHD at x = 3) = lim_{x\to3^-}\frac{f(x)-f(3)}{x-3}

= lim_{h\to0}\frac{(-12h)}{-h}

= 12

RHD at x = 3 = lim_{x\to3^+}\frac{f(x)-f(3)}{x-3}

= lim_{h\to0}\frac{h(2h+12)}{h}

= 12

Since LHL = RHL

f(x) is differentiable at x = 3.

Question 4. Show that the function f is defined as follows is continuous at x = 2, but not differentiable thereat:

f(x) = \begin{cases}3x-2\ \ \ \ \ \ \ \ \ \ ,0<x≤1\\2x^2-2\ \ \ \ \ \ \ \ ,1<x≤2\\5x-4\ \ \ \  \ \ \ \  \ \  ,x>2\end{cases}

Solution:

f(2) = 2(2)2 – 2 = 6

LHL = lim_{x\to2^-}f(2-h) 

= lim_{h\to0}[2(2-h)^2-(2-h)]

= 8 – 2 

= 6

RHL = lim_{x\to2^+}f(x)

= lim_{h\to0}f(2+h) 

= lim_{h\to0}5(2+h) - 4

= 6

Clearly LHL = RHL at x = 2

Hence f(x) is differentiable at x = 2.

Question 5. Discuss the continuity and differentiability of the function f(x) = |x| + |x -1| in the interval of (-1, 2).

Solution:

f(x) = \begin{cases}x+x+1\ \ \ ,-1<x<0\\1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,0≤x≤1\\-x-x+1,1<x<2\end{cases}

f(x) = \begin{cases}2x+1,-1<x<0\\1,0≤x≤1\\-2x+1,1<x<2\end{cases}

(LHD at x = 0) = lim_{x\to0^-}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{2x}{x} 

= 2

(RHD at x = 0) = lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{0}{x}

= 0

Thus, f(x) is not differentiable at x = 0.

Question 6. Find whether the following function is differentiable at x = 1 and x = 2 or not.

f(x) = \begin{cases}x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ ,x≤1\\2-x\ \ \ \ \ \ \ \ \ \  \ \ \ \ \ \ ,1≤x≤2\\-2+3x-x^2\ \ ,x>2\end{cases}.

Solution:

(LHD at x = 1) = lim_{x\to1^-}\frac{f(x)-f(1)}{x-1}

= lim_{x\to1^-}\frac{x-1}{x-1}

= 1

(RHD at x = 1) = lim_{x\to1^+}\frac{f(x)-f(1)}{x-1}

= lim_{x\to1^+}\frac{1-x}{x-1}

= –1

Clearly LHD ≠ RHD at x = 1

So f(x) is not differentiable at x = 1.

(LHD at x = 2) = lim_{x\to2^-}\frac{f(x)-f(2)}{x-2}

= lim_{x\to2^-}\frac{2-x}{x-2}

= –1

(RHD at x = 2) = lim_{x\to2^+}\frac{f(x)-f(2)}{x-2}

= lim_{x\to2^+}(1-x)

= –1

Clearly LHL = RHL at x = 2

Hence f(x) is differentiable at x = 2.

Question 7(i). Show that f(x) = \begin{cases}x^msin[\frac{1}{x}],x≠0\\0\ \ \ \ \ \  \ \ \ \ \ \  \ \ ,x=0\end{cases}  is differentiable at x = 0, if m>1.

Solution:

(LHD at x = 0) = lim_{x\to0^-}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{f(0-h)-f(0)}{0-h-0}

= lim_{h\to0}\frac{(-h)^msin[\frac{-1}{h}]-0}{-h}

= 0 × k

= 0

(RHD at x = 0) = lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{(0+h)-f(0)}{0+h-0} 

= lim_{h\to0}\frac{(h)^msin[\frac{-1}{h}]-0}{-h}

=  0 × k

= 0

Clearly LHL = RHL at x = 0

Hence f(x) is differentiable at x = 0.

Question 7(ii) Show that f(x) = \begin{cases}x^msin[\frac{1}{x}],x≠0\\0\ \ \ \ \ \  \ \ \ \ \ \  \ \ ,x=0\end{cases}  is not differentiable at x = 0, if 0<m<1.

Solution:

(LHD at x = 0) = lim_{x\to0^-}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{f(0-h)-f(0)}{0-h-0}

= lim_{h\to0}\frac{(-h)^msin[\frac{-1}{h}]-0}{-h}

= Not defined

(RHD at x = 0) = lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{(0+h)-f(0)}{0+h-0}

= lim_{h\to0}\frac{(h)^msin[\frac{-1}{h}]-0}{-h}

= Not defined

Clearly f(x) is not differentiable at x = 0.

Question 7(iii) Show that f(x) = \begin{cases}x^msin[\frac{1}{x}],x≠0\\0\ \ \ \ \ \  \ \ \ \ \ \  \ \ ,x=0\end{cases}  is not differentiable at x = 0, if m≤0.

Solution:

(LHD at x = 0) = lim_{x\to0^-}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{f(0-h)-f(0)}{0-h-0}

= lim_{h\to0}\frac{(-h)^msin[\frac{-1}{h}]-0}{-h}

= Not defined

(RHD at x = 0) = lim_{x\to0^+}\frac{f(x)-f(0)}{x-0}

= lim_{h\to0}\frac{(0+h)-f(0)}{0+h-0}

= lim_{h\to0}\frac{(h)^msin[\frac{-1}{h}]-0}{-h}

= Not defined

Clearly f(x) is not differentiable at x = 0.

Question 8. Find the value of a and b so that the function f(x)= \begin{cases}x^2+3x+a,x≤1\\bx+2,x>1\end{cases}  is differentiable at each real value of x.

Solution:

(LHD at x = 1) = lim_{x\to1^-}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{h^2-5h}{-h}

= 5

(RHD at x = 2) = lim_{x\to1^+}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{b+bh+2-b-2}{h}

= b

Since f(x) is differentiable at x = 1,so

b = 5

Hence, 4 + a = b + 2

or, a = 7 – 4 = 3

Hence, a = 3 and b = 5.

Question 9. Show that the function f(x) = \begin{cases}|2x-3|[x]\ \ \ \ \ \ \ \ ,x≥1\\sin[\frac{πx}{2}]\ \ \ \ \ \ \ \ \ \ \ \  \ \ ,x<1\end{cases}  is notdifferentiable at x =1.

Solution:

(LHD at x = 1) = lim_{x\to1^-}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{f(1-h)-1}{1-h-1}

= lim_{h\to0}\frac{cos[πh/2]-1}{-h/2}

= 0

(RHD at x =1) =  lim_{x\to1^+}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{f(1+h)-f(1)}{1+h-1}

= lim_{h\to0}\frac{-2-2h+3-1}{h}

= –2

Since (LHD at x = 1) ≠ (RHD at x = 1)

f(x) is continuous but not differentiable at x =1.

Question 10. If f(x) = \begin{cases}ax^2-b\ \ \ \ \ \  \ ,|x|<1\\\frac{1}{|x|}\ \ \  \ \ \ \ \ \ \ \ \ \ \ \ ,|x|≥1\end{cases}  is differentiable at x = 1, find a and b.

Solution:

We know f(x) is continuous at x = 1.

So, a – b = 1                        .....(1)

(LHD at x = 1) = lim_{x\to1^-}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{a(1-h)^2-(a-1)-1}{-h}

Using (1), we get

= lim_{h\to0}(2a-ah)

= 2a

(RHD at x =1) = lim_{x\to1^+}\frac{f(x)-f(1)}{x-1}

= lim_{h\to0}\frac{-1}{1+h}

= –1

Since f(x) is differentiable, LHL = RHL

or, 2a = –1

a = –1/2

Substituting a = –1/2 in (1), we get,

b = –1/2 – 1

b = –3/2

Summary

Exercise 10.1 focuses on the concept of differentiability of functions. It covers topics such as determining if a function is differentiable at a point or in an interval, finding the value of constants to make a function differentiable, and understanding the relationship between continuity and differentiability. Students are expected to apply the definition of differentiability, use limit concepts, and analyze function behavior at critical points.


Similar Reads