Compute nCr%p using Fermat Little Theorem
Last Updated :
15 Apr, 2023
Given three numbers n, r and p, compute the value of nCr mod p. Here p is a prime number greater than n. Here nCr is Binomial Coefficient.
Example:
Input: n = 10, r = 2, p = 13
Output: 6
Explanation: 10C2 is 45 and 45 % 13 is 6.
Input: n = 6, r = 2, p = 13
Output: 2
We have discussed the following methods in previous posts.
Compute nCr % p | Set 1 (Introduction and Dynamic Programming Solution)
Compute nCr % p | Set 2 (Lucas Theorem)
In this post, Fermat Theorem-based solution is discussed.
Background:
Fermat's little theorem and modular inverse
Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap - a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as:
ap = a (mod p)
For example, if a = 2 and p = 7, 27 = 128, and 128 - 2 = 7 × 18 is an integer multiple of 7.
If a is not divisible by p, Fermat's little theorem is equivalent to the statement a p - 1 - 1 is an integer multiple of p, i.e
ap-1 = 1 (mod p)
If we multiply both sides by a-1, we get.
ap-2 = a-1 (mod p)
So we can find modular inverse as p-2.
Computation:
We know the formula for nCr
nCr = fact(n) / (fact(r) x fact(n-r))
Here fact() means factorial.
nCr % p = (fac[n]* modIverse(fac[r]) % p *
modIverse(fac[n-r]) % p) % p;
Here modIverse() means modular inverse under
modulo p.
Following is the implementation of the above algorithm. In the following implementation, an array fac[] is used to store all the computed factorial values.
C++
// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x,
int y, int p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n,
int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
int r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
unsigned long long fac[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (fac[i - 1] * i) % p;
return (fac[n] * modInverse(fac[r], p) % p
* modInverse(fac[n - r], p) % p)
% p;
}
// Driver program
int main()
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
cout << "Value of nCr % p is "
<< nCrModPFermat(n, r, p);
return 0;
}
Java
// A modular inverse based solution to
// compute nCr %
import java.io.*;
class GFG {
/* Iterative Function to calculate
(x^y)%p in O(log y) */
static int power(int x, int y, int p)
{
// Initialize result
int res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static int modInverse(int n, int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static int nCrModPFermat(int n, int r,
int p)
{
if (n<r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
int[] fac = new int[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}
// Driver program
public static void main(String[] args)
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
System.out.println("Value of nCr % p is "
+ nCrModPFermat(n, r, p));
}
}
// This code is contributed by Anuj_67.
Python3
# Python3 program to calculate nCr % p
#Python function to calculate nCr % p
def ncr(n, r, p):
# initialize numerator and denominator
num = den = 1
for i in range(r):
num = (num * (n - i)) % p
den = (den * (i + 1)) % p
return (num * pow(den, p - 2, p)) % p
# p must be a prime greater than n
n, r, p = 10, 2, 13
print("Value of nCr % p is", ncr(n, r, p))
C#
// A modular inverse based solution to
// compute nCr % p
using System;
class GFG {
/* Iterative Function to calculate
(x^y)%p in O(log y) */
static int power(int x, int y, int p)
{
// Initialize result
int res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static int modInverse(int n, int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static int nCrModPFermat(int n, int r,
int p)
{
if (n<r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
int[] fac = new int[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}
// Driver program
static void Main()
{
// p must be a prime greater than n.
int n = 10, r = 11, p = 13;
Console.Write("Value of nCr % p is "
+ nCrModPFermat(n, r, p));
}
}
// This code is contributed by Anuj_67
PHP
<?php
// A modular inverse
// based solution to
// compute nCr % p
// Iterative Function to
// calculate (x^y)%p
// in O(log y)
function power($x, $y, $p)
{
// Initialize result
$res = 1;
// Update x if it
// is more than or
// equal to p
$x = $x % $p;
while ($y > 0)
{
// If y is odd,
// multiply x
// with result
if ($y & 1)
$res = ($res * $x) % $p;
// y must be
// even now
// y = y/2
$y = $y >> 1;
$x = ($x * $x) % $p;
}
return $res;
}
// Returns n^(-1) mod p
function modInverse($n, $p)
{
return power($n, $p - 2, $p);
}
// Returns nCr % p using
// Fermat's little
// theorem.
function nCrModPFermat($n, $r, $p)
{
if ($n<$r)
return 0;
// Base case
if ($r==0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
//$fac[$n+1];
$fac[0] = 1;
for ($i = 1; $i <= $n; $i++)
$fac[$i] = $fac[$i - 1] *
$i % $p;
return ($fac[$n] * modInverse($fac[$r], $p) % $p *
modInverse($fac[$n - $r], $p) % $p) % $p;
}
// Driver Code
// p must be a prime
// greater than n.
$n = 10;
$r = 2;
$p = 13;
echo "Value of nCr % p is ",
nCrModPFermat($n, $r, $p);
// This code is contributed by Ajit.
?>
JavaScript
<script>
// A modular inverse based solution
// to compute nCr % p
/* Iterative Function to calculate
(x^y)%p in O(log y) */
function power(x, y, p)
{
// Initialize result
let res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
function modInverse(n, p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
function nCrModPFermat(n, r, p)
{
if (n<r)
{
return 0;
}
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
let fac = new Array(n + 1);
fac[0] = 1;
for (let i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p) % p *
modInverse(fac[n - r], p) % p) % p;
}
// p must be a prime greater than n.
let n = 10, r = 2, p = 13;
document.write("Value of nCr % p is " +
nCrModPFermat(n, r, p));
</script>
OutputValue of nCr % p is 6
Time Complexity: O(n)
Auxiliary Space: O(n)
We can further improve it's space complexity:
Instead of calculating factorial in a different array, we can directly multiply numbers with some cancellations.
We know the formula for nCr
nCr = fact(n) / (fact(r) x fact(n-r))
fact(n) = n * (n-1) * (n-2) * (n-3)* .... * 1;
fact(r) = r * (r-1) * (r-2) * ......... *1;
Because r is always less than n in nCr So all factors in fact(r) also come in fact(n),
hence we can cancell them.
And get the multiplication of rest elements of numerator and denominator(fact(n-r))
Note that rest elements of numerator will be n* (n-1) *(n-2) * .... (r+1).
We can also improve time complexity with the logic nCr is equal to nC(n-r). So whenever n-r is less than r compute nCn-r instead of nCr.
See the below implementation:
C++
// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x, int y, int p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0) {
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n, int p)
{
return power(n, p - 2, p);
}
unsigned long long mul(unsigned long long x,
unsigned long long y, int p)
{
return x * 1ull * y % p;
}
unsigned long long divide(unsigned long long x,
unsigned long long y, int p)
{
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
int r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
unsigned long long res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (int i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
int main()
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
cout << "Value of nCr % p is "
<< nCrModPFermat(n, r, p);
return 0;
}
//Code and idea by Harsh Singh (hsnooob)
Java
import java.util.*;
public class Gfg {
// Iterative Function to calculate (x^y)%p in O(log y)
public static long power(long x, int y, int p) {
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal to p
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
public static long modInverse(long n, int p) {
return power(n, p - 2, p);
}
public static long mul(long x, long y, int p) {
return x * 1L * y % p;
}
public static long divide(long x, long y, int p) {
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModPFermat(long n, long r, int p) {
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we can find all factorial of r, n and n-r
long res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (long i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
public static void main(String[] args) {
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
System.out.println("Value of nCr % p is " + nCrModPFermat(n, r, p));
}
}
Python3
def power(x, y, p):
res = 1
x = x % p
while y > 0:
if y & 1:
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
def modInverse(n, p):
return power(n, p - 2, p)
def mul(x, y, p):
return (x * y) % p
def divide(x, y, p):
return mul(x, modInverse(y, p), p)
def nCrModPFermat(n, r, p):
if n < r:
return 0
if r == 0:
return 1
if n - r < r:
return nCrModPFermat(n, n - r, p)
res = 1
for i in range(1, r + 1):
res = divide(mul(res, n - i + 1, p), i, p)
return res
n = 10
r = 2
p = 13
print("Value of nCr % p is", nCrModPFermat(n, r, p))
C#
using System;
class Program {
// Iterative Function to calculate (x^y)%p in O(log y)
static long Power(long x, int y, int p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal
// to p
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static long ModInverse(long n, int p)
{
return Power(n, p - 2, p);
}
static long Mul(long x, long y, int p)
{
return x * 1L * y % p;
}
static long Divide(long x, long y, int p)
{
return Mul(x, ModInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
static long NCrModPFermat(long n, long r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return NCrModPFermat(n, n - r, p);
// Fill factorial array so that we can find all
// factorial of r, n and n-r
long res = 1;
// keep multiplying numerator terms and dividing
// denominator terms in res
for (long i = r; i >= 1; i--)
res = Divide(Mul(res, n - i + 1, p), i, p);
return res;
}
static void Main(string[] args)
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
Console.WriteLine("Value of nCr % p is "
+ NCrModPFermat(n, r, p));
}
}
JavaScript
// A modular inverse based solution to
// compute nCr % p
function power(x, y, p) {
let res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal to p
while (y > 0) {
// If y is odd, multiply x with result
if (y & 1) res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
function modInverse(n, p) {
return power(n, p - 2, p);
}
function mul(x, y, p) {
return (x * y) % p;
}
function divide(x, y, p) {
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
function nCrModPFermat(n, r, p) {
// If n<r, then nCr should return 0
if (n < r) return 0;
// Base case
if (r == 0) return 1;
// if n-r is less calculate nCn-r
if (n - r < r) return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
let res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (let i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
let n = 10,
r = 2,
p = 13;
console.log("Value of nCr % p is " + nCrModPFermat(n, r, p));
OutputValue of nCr % p is 6
Time Complexity: O(n)
Auxiliary Space: O(1)
Improvements:
In competitive programming, we can pre-compute fac[] for a given upper limit so that we don't have to compute it for every test case. We also can use unsigned long long int everywhere to avoid overflows.
Similar Reads
Binary Exponentiation for Competitive Programming In competitive programming, we often need to do a lot of big number calculations fast. Binary exponentiation is like a super shortcut for doing powers and can make programs faster. This article will show you how to use this powerful trick to enhance your coding skills. Table of ContentWhat is Binary
15+ min read
Padovan Sequence Padovan Sequence similar to Fibonacci sequence with similar recursive structure. The recursive formula is, P(n) = P(n-2) + P(n-3) P(0) = P(1) = P(2) = 1 Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...... Spiral of squares with side lengths which follow the Fibonacci sequence. Padovan Sequ
4 min read
Count of different ways to express N as the sum of 1, 3 and 4 Given a positive integer n, the task is to count the number of ways to express n as a sum of 1, 3 and 4.Examples: Input: n = 4Output: 4Explanation: There is 4 ways to represent 4 as sum of 1, 3 and 4: (1+1+1+1), (1+3), (3+1) and (4).Input: n = 3Output: 2Explanation: There is 2 ways to represent 3 as
13 min read
Find the Nth element of the modified Fibonacci series Given two integers A and B which are the first two terms of the series and another integer N. The task is to find the Nth number using Fibonacci rule i.e. fib(i) = fib(i - 1) + fib(i - 2)Example: Input: A = 2, B = 3, N = 4 Output: 8 The series will be 2, 3, 5, 8, 13, 21, ... And the 4th element is 8
5 min read
Program to Check Geometric Progression A sequence of numbers is called a Geometric progression if the ratio of any two consecutive terms is always the same.In simple terms, A geometric series is a list of numbers where each number, or term, is found by multiplying the previous term by a common ratio r. The general form of Geometric Progr
6 min read
Carol Number A Carol number is an integer of the form 4n - 2(n+1) - 1. An equivalent formula is (2n-1)2 - 2.An Interesting Property : For n > 2, the binary representation of the n-th Carol number is n-2 consecutive one's, a single zero in the middle, and n + 1 more consecutive one's. Example, n = 4 carol numb
3 min read
Matrix Exponentiation Matrix Exponentiation is a technique used to calculate a matrix raised to a power efficiently, that is in logN time. It is mostly used for solving problems related to linear recurrences.Idea behind Matrix Exponentiation:Similar to Binary Exponentiation which is used to calculate a number raised to a
15+ min read
String hashing using Polynomial rolling hash function Given a string str of length n, your task is to find its hash value using polynomial rolling hash function.Note: If two strings are equal, their hash values should also be equal. But the inverse need not be true.Examples:Input: str = "geeksforgeeks"Output: 609871790Input: str = "polynomial"Output: 9
15+ min read
Compute nCr%p using Fermat Little Theorem Given three numbers n, r and p, compute the value of nCr mod p. Here p is a prime number greater than n. Here nCr is Binomial Coefficient.Example: Input: n = 10, r = 2, p = 13 Output: 6 Explanation: 10C2 is 45 and 45 % 13 is 6. Input: n = 6, r = 2, p = 13 Output: 2Recommended PracticenCrTry It! We h
15+ min read
Generalized Fibonacci Numbers We all know that Fibonacci numbers (Fn) are defined by the recurrence relation Fibonacci Numbers (Fn) = F(n-1) + F(n-2) with seed values F0 = 0 and F1 = 1 Similarly, we can generalize these numbers. Such a number sequence is known as Generalized Fibonacci number (G). Generalized Fibonacci number (G)
10 min read