Construct a Binary Search Tree from given postorder
Last Updated :
20 Feb, 2023
Given postorder traversal of a binary search tree, construct the BST.
For example, if the given traversal is {1, 7, 5, 50, 40, 10}, then following tree should be constructed and root of the tree should be returned.
10
/ \
5 40
/ \ \
1 7 50
Method 1 ( O(n^2) time complexity ):
The last element of postorder traversal is always root. We first construct the root. Then we find the index of last element which is smaller than root. Let the index be 'i'. The values between 0 and 'i' are part of left subtree, and the values between 'i+1' and 'n-2' are part of right subtree. Divide given post[] at index "i" and recur for left and right sub-trees.
For example in {1, 7, 5, 50, 40, 10}, 10 is the last element, so we make it root. Now we look for the last element smaller than 10, we find 5. So we know the structure of BST is as following.
10
/ \
/ \
{1, 7, 5} {50, 40}
We recursively follow above steps for subarrays {1, 7, 5} and {40, 50}, and get the complete tree.
Method 2 ( O(n) time complexity ):
The trick is to set a range {min .. max} for every node. Initialize the range as {INT_MIN .. INT_MAX}. The last node will definitely be in range, so create root node. To construct the left subtree, set the range as {INT_MIN …root->data}. If a values is in the range {INT_MIN .. root->data}, the values is part of left subtree. To construct the right subtree, set the range as {root->data .. INT_MAX}.
Following code is used to generate the exact Binary Search Tree of a given post order traversal.
C++
/* A O(n) program for construction of
BST from postorder traversal */
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data,
pointer to left child and a
pointer to right child */
struct node
{
int data;
struct node *left, *right;
};
// A utility function to create a node
struct node* newNode (int data)
{
struct node* temp =
(struct node *) malloc(sizeof(struct node));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// A recursive function to construct
// BST from post[]. postIndex is used
// to keep track of index in post[].
struct node* constructTreeUtil(int post[], int* postIndex,
int key, int min, int max,
int size)
{
// Base case
if (*postIndex < 0)
return NULL;
struct node* root = NULL;
// If current element of post[] is
// in range, then only it is part
// of current subtree
if (key > min && key < max)
{
// Allocate memory for root of this
// subtree and decrement *postIndex
root = newNode(key);
*postIndex = *postIndex - 1;
if (*postIndex >= 0)
{
// All nodes which are in range {key..max}
// will go in right subtree, and first such
// node will be root of right subtree.
root->right = constructTreeUtil(post, postIndex,
post[*postIndex],
key, max, size );
// Construct the subtree under root
// All nodes which are in range {min .. key}
// will go in left subtree, and first such
// node will be root of left subtree.
root->left = constructTreeUtil(post, postIndex,
post[*postIndex],
min, key, size );
}
}
return root;
}
// The main function to construct BST
// from given postorder traversal.
// This function mainly uses constructTreeUtil()
struct node *constructTree (int post[],
int size)
{
int postIndex = size-1;
return constructTreeUtil(post, &postIndex,
post[postIndex],
INT_MIN, INT_MAX, size);
}
// A utility function to print
// inorder traversal of a Binary Tree
void printInorder (struct node* node)
{
if (node == NULL)
return;
printInorder(node->left);
cout << node->data << " ";
printInorder(node->right);
}
// Driver Code
int main ()
{
int post[] = {1, 7, 5, 50, 40, 10};
int size = sizeof(post) / sizeof(post[0]);
struct node *root = constructTree(post, size);
cout << "Inorder traversal of "
<< "the constructed tree: \n";
printInorder(root);
return 0;
}
// This code is contributed
// by Akanksha Rai
C
/* A O(n) program for construction of BST from
postorder traversal */
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node *left, *right;
};
// A utility function to create a node
struct node* newNode (int data)
{
struct node* temp =
(struct node *) malloc( sizeof(struct node));
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// A recursive function to construct BST from post[].
// postIndex is used to keep track of index in post[].
struct node* constructTreeUtil(int post[], int* postIndex,
int key, int min, int max, int size)
{
// Base case
if (*postIndex < 0)
return NULL;
struct node* root = NULL;
// If current element of post[] is in range, then
// only it is part of current subtree
if (key > min && key < max)
{
// Allocate memory for root of this subtree and decrement
// *postIndex
root = newNode(key);
*postIndex = *postIndex - 1;
if (*postIndex >= 0)
{
// All nodes which are in range {key..max} will go in right
// subtree, and first such node will be root of right subtree.
root->right = constructTreeUtil(post, postIndex, post[*postIndex],
key, max, size );
// Construct the subtree under root
// All nodes which are in range {min .. key} will go in left
// subtree, and first such node will be root of left subtree.
root->left = constructTreeUtil(post, postIndex, post[*postIndex],
min, key, size );
}
}
return root;
}
// The main function to construct BST from given postorder
// traversal. This function mainly uses constructTreeUtil()
struct node *constructTree (int post[], int size)
{
int postIndex = size-1;
return constructTreeUtil(post, &postIndex, post[postIndex],
INT_MIN, INT_MAX, size);
}
// A utility function to print inorder traversal of a Binary Tree
void printInorder (struct node* node)
{
if (node == NULL)
return;
printInorder(node->left);
printf("%d ", node->data);
printInorder(node->right);
}
// Driver program to test above functions
int main ()
{
int post[] = {1, 7, 5, 50, 40, 10};
int size = sizeof(post) / sizeof(post[0]);
struct node *root = constructTree(post, size);
printf("Inorder traversal of the constructed tree: \n");
printInorder(root);
return 0;
}
Java
/* A O(n) program for construction of BST from
postorder traversal */
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node
{
int data;
Node left, right;
Node(int data)
{
this.data = data;
left = right = null;
}
}
// Class containing variable that keeps a track of overall
// calculated postindex
class Index
{
int postindex = 0;
}
class BinaryTree
{
// A recursive function to construct BST from post[].
// postIndex is used to keep track of index in post[].
Node constructTreeUtil(int post[], Index postIndex,
int key, int min, int max, int size)
{
// Base case
if (postIndex.postindex < 0)
return null;
Node root = null;
// If current element of post[] is in range, then
// only it is part of current subtree
if (key > min && key < max)
{
// Allocate memory for root of this subtree and decrement
// *postIndex
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1;
if (postIndex.postindex >= 0)
{
// All nodes which are in range {key..max} will go in
// right subtree, and first such node will be root of right
// subtree
root.right = constructTreeUtil(post, postIndex,
post[postIndex.postindex],key, max, size);
// Construct the subtree under root
// All nodes which are in range {min .. key} will go in left
// subtree, and first such node will be root of left subtree.
root.left = constructTreeUtil(post, postIndex,
post[postIndex.postindex],min, key, size);
}
}
return root;
}
// The main function to construct BST from given postorder
// traversal. This function mainly uses constructTreeUtil()
Node constructTree(int post[], int size)
{
Index index = new Index();
index.postindex = size - 1;
return constructTreeUtil(post, index, post[index.postindex],
Integer.MIN_VALUE, Integer.MAX_VALUE, size);
}
// A utility function to print inorder traversal of a Binary Tree
void printInorder(Node node)
{
if (node == null)
return;
printInorder(node.left);
System.out.print(node.data + " ");
printInorder(node.right);
}
// Driver program to test above functions
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
int post[] = new int[]{1, 7, 5, 50, 40, 10};
int size = post.length;
Node root = tree.constructTree(post, size);
System.out.println("Inorder traversal of the constructed tree:");
tree.printInorder(root);
}
}
// This code has been contributed by Mayank Jaiswal
Python3
# A O(n) program for construction of BST
# from postorder traversal
INT_MIN = -2**31
INT_MAX = 2**31
# A binary tree node has data, pointer to
# left child and a pointer to right child
# A utility function to create a node
class newNode:
def __init__(self, data):
self.data = data
self.left = self.right = None
# A recursive function to construct
# BST from post[]. postIndex is used
# to keep track of index in post[].
def constructTreeUtil(post, postIndex,
key, min, max, size):
# Base case
if (postIndex[0] < 0):
return None
root = None
# If current element of post[] is
# in range, then only it is part
# of current subtree
if (key > min and key < max) :
# Allocate memory for root of this
# subtree and decrement *postIndex
root = newNode(key)
postIndex[0] = postIndex[0] - 1
if (postIndex[0] >= 0) :
# All nodes which are in range key..
# max will go in right subtree, and
# first such node will be root of
# right subtree.
root.right = constructTreeUtil(post, postIndex,
post[postIndex[0]],
key, max, size )
# Construct the subtree under root
# All nodes which are in range min ..
# key will go in left subtree, and
# first such node will be root of
# left subtree.
root.left = constructTreeUtil(post, postIndex,
post[postIndex[0]],
min, key, size )
return root
# The main function to construct BST
# from given postorder traversal. This
# function mainly uses constructTreeUtil()
def constructTree (post, size) :
postIndex = [size-1]
return constructTreeUtil(post, postIndex,
post[postIndex[0]],
INT_MIN, INT_MAX, size)
# A utility function to printInorder
# traversal of a Binary Tree
def printInorder (node) :
if (node == None) :
return
printInorder(node.left)
print(node.data, end = " ")
printInorder(node.right)
# Driver Code
if __name__ == '__main__':
post = [1, 7, 5, 50, 40, 10]
size = len(post)
root = constructTree(post, size)
print("Inorder traversal of the",
"constructed tree: ")
printInorder(root)
# This code is contributed
# by SHUBHAMSINGH10
C#
using System;
/* A O(n) program for
construction of BST from
postorder traversal */
/* A binary tree node has data,
pointer to left child and a
pointer to right child */
class Node
{
public int data;
public Node left, right;
public Node(int data)
{
this.data = data;
left = right = null;
}
}
// Class containing variable
// that keeps a track of overall
// calculated postindex
class Index
{
public int postindex = 0;
}
public class BinaryTree
{
// A recursive function to
// construct BST from post[].
// postIndex is used to
// keep track of index in post[].
Node constructTreeUtil(int []post, Index postIndex,
int key, int min, int max, int size)
{
// Base case
if (postIndex.postindex < 0)
return null;
Node root = null;
// If current element of post[] is in range, then
// only it is part of current subtree
if (key > min && key < max)
{
// Allocate memory for root of
// this subtree and decrement *postIndex
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1;
if (postIndex.postindex >= 0)
{
// All nodes which are in range
// {key..max} will go in right subtree,
// and first such node will be root of
// right subtree
root.right = constructTreeUtil(post, postIndex,
post[postIndex.postindex], key, max, size);
// Construct the subtree under root
// All nodes which are in range
// {min .. key} will go in left
// subtree, and first such node
// will be root of left subtree.
root.left = constructTreeUtil(post, postIndex,
post[postIndex.postindex],min, key, size);
}
}
return root;
}
// The main function to construct
// BST from given postorder traversal.
// This function mainly uses constructTreeUtil()
Node constructTree(int []post, int size)
{
Index index = new Index();
index.postindex = size - 1;
return constructTreeUtil(post, index,
post[index.postindex],
int.MinValue, int.MaxValue, size);
}
// A utility function to print
// inorder traversal of a Binary Tree
void printInorder(Node node)
{
if (node == null)
return;
printInorder(node.left);
Console.Write(node.data + " ");
printInorder(node.right);
}
// Driver code
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
int []post = new int[]{1, 7, 5, 50, 40, 10};
int size = post.Length;
Node root = tree.constructTree(post, size);
Console.WriteLine("Inorder traversal of" +
"the constructed tree:");
tree.printInorder(root);
}
}
// This code has been contributed by PrinciRaj1992
JavaScript
<script>
/* A O(n) program for
construction of BST from
postorder traversal */
/* A binary tree node has data,
pointer to left child and a
pointer to right child */
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Class containing variable
// that keeps a track of overall
// calculated postindex
class Index {
constructor() {
this.postindex = 0;
}
}
class BinaryTree {
// A recursive function to
// construct BST from post[].
// postIndex is used to
// keep track of index in post[].
constructTreeUtil(post, postIndex, key, min, max, size) {
// Base case
if (postIndex.postindex < 0) return null;
var root = null;
// If current element of post[] is in range, then
// only it is part of current subtree
if (key > min && key < max) {
// Allocate memory for root of
// this subtree and decrement *postIndex
root = new Node(key);
postIndex.postindex = postIndex.postindex - 1;
if (postIndex.postindex >= 0) {
// All nodes which are in range
// {key..max} will go in right subtree,
// and first such node will be root of
// right subtree
root.right = this.constructTreeUtil(
post,
postIndex,
post[postIndex.postindex],
key,
max,
size
);
// Construct the subtree under root
// All nodes which are in range
// {min .. key} will go in left
// subtree, and first such node
// will be root of left subtree.
root.left = this.constructTreeUtil(
post,
postIndex,
post[postIndex.postindex],
min,
key,
size
);
}
}
return root;
}
// The main function to construct
// BST from given postorder traversal.
// This function mainly uses constructTreeUtil()
constructTree(post, size) {
var index = new Index();
index.postindex = size - 1;
return this.constructTreeUtil(
post,
index,
post[index.postindex],
-2147483648,
2147483647,
size
);
}
// A utility function to print
// inorder traversal of a Binary Tree
printInorder(node) {
if (node == null) return;
this.printInorder(node.left);
document.write(node.data + " ");
this.printInorder(node.right);
}
}
// Driver code
var tree = new BinaryTree();
var post = [1, 7, 5, 50, 40, 10];
var size = post.length;
var root = tree.constructTree(post, size);
document.write("Inorder traversal of " +
"the constructed tree: <br>");
tree.printInorder(root);
</script>
OutputInorder traversal of the constructed tree:
1 5 7 10 40 50
Time Complexity: O(n)
Space Complexity: O(h), where h is the height of the BST
Note that the output to the program will always be a sorted sequence as we are printing the inorder traversal of a Binary Search Tree.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read