Open In App

Euclid's lemma

Last Updated : 19 Nov, 2016
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report
We are given two numbers x and y. We know that a number p divides their product. Can we say for sure that p also divides one of them? The answer is no. For example, consider x = 15, y = 6 and p = 9. p divides the product 15*6, but doesn't divide any of them. What if p is prime? Euclid's lemma states that if a prime p divides the product of two numbers (x*y), it must divide at least one of those numbers. For example x = 15, y = 6 and p = 5. p divides the product 15*6, it also divides 15. The idea is simple, since p is prime, it cannot be factorized. So it must either be completely present in x or in y. Generalization of Euclid's lemma: If p divides x*y and p is relatively prime to x, then p must divide y. In the above example, 5 is relatively prime to 6, therefore it must divide 15. Reference: https://en.wikipedia.org/wiki/Euclid's_lemma

Next Article
Article Tags :
Practice Tags :

Similar Reads