Open In App

Longest subsequence such that adjacent elements have at least one common digit

Last Updated : 11 Jul, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given an array arr[], the task is to find the length of the longest sub-sequence such that adjacent elements of the subsequence have at least one digit in common.

Examples: 

Input: arr[] = [1, 12, 44, 29, 33, 96, 89] 
Output:
Explanation: The longest sub-sequence is [1 12 29 96 89]

Input: arr[] = [12, 23, 45, 43, 36, 97] 
Output:
Explanation: The longest sub-sequence is [12 23 43 36]

 Using recursion - O(2^n) Time O(n) Space

In this approach, we recursively explore all possible subsequences from the given array. For each subsequence, we check whether every pair of adjacent elements shares at least one common digit. This is done by maintaining a prevDigit array that tracks the digits encountered in the previous subsequence element. If a common digit is found between the current element and the last chosen element, we update the subsequence length. Ultimately, the recursion helps identify the longest subsequence that satisfies the condition where each adjacent pair has at least one digit in common.

C++
// C++ program to find max length of the subsequence
// such that each adjacent element of the subsequence has at 
// least one digit in common.

#include <bits/stdc++.h>
using namespace std;

int longestSubsequence(int curr, vector<int> &arr, vector<int> prevDigit) {

    // Base case: If we've processed all elements, return 0
    if (curr >= arr.size())
        return 0;

    // Recurse by skipping the current number
    int res = longestSubsequence(curr + 1, arr, prevDigit);

    bool hasCommonDigit = false;

    // Convert the number to string to check its digits
    string numStr = to_string(arr[curr]);

    // Check if any digit in the current number matches 
  	// a previously used digit
    for (auto digitChar : numStr) {
        int digit = digitChar - '0';
        if (prevDigit[digit] == 1) {
            hasCommonDigit = true;
            break;
        }
    }

    // If there's a common digit, consider this number as
  	// part of the subsequence
    if (hasCommonDigit) {

        // Reset prevDigit to reflect the current 
      	// number's digits
        for (int i = 0; i < 10; i++) {
            prevDigit[i] = 0;
        }

        // Mark the digits of the current number as used
        for (auto digitChar : numStr) {
            prevDigit[digitChar - '0'] = 1;
        }

        // Recurse, adding the current number to the
      	// subsequence
        res = max(res, 1 + longestSubsequence(curr + 1, arr, prevDigit));
    }

    return res;
}

int main() {

    vector<int> arr = {1, 12, 44, 29, 33, 96, 89};
    vector<int> prevDigit(10, 1);
    int res = longestSubsequence(0, arr, prevDigit);
    cout << res << endl;
     return 0;
}
Java
// Java program to find max length of the subsequence such
// that each adjacent element of the subsequence has at
// least one digit in common.

import java.util.*;

class GfG {

    static int
    longestSubsequence(int curr, int[] arr,
                                      int[] prevDigit) {

        // Base case: If we've processed all elements,
        // return 0
        if (curr >= arr.length)
            return 0;

        // Recurse by skipping the current number
        int res = longestSubsequence(
            curr + 1, arr, prevDigit);

        boolean hasCommonDigit = false;

        // Convert the number to string to check its digits
        String numStr = Integer.toString(arr[curr]);

        // Check if any digit in the current number matches
        // a previously used digit
        for (char digitChar : numStr.toCharArray()) {
            int digit = digitChar - '0';
            if (prevDigit[digit] == 1) {
                hasCommonDigit = true;
                break;
            }
        }

        // If there's a common digit, consider this number
        // as part of the subsequence
        if (hasCommonDigit) {

            // Reset prevDigit to reflect the current
            // number's digits
            Arrays.fill(prevDigit, 0);

            // Mark the digits of the current number as used
            for (char digitChar : numStr.toCharArray()) {
                prevDigit[digitChar - '0'] = 1;
            }

            // Recurse, adding the current number to the
            // subsequence
            res = Math.max(
                res,
                1 + longestSubsequence(
                        curr + 1, arr, prevDigit));
        }

        return res;
    }

    public static void main(String[] args) {

        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };


        int[] prevDigit = new int[10];
        Arrays.fill(
            prevDigit,
            1);  

        int res = longestSubsequence(
            0, arr, prevDigit);
        System.out.println(res);
    }
}
Python
# Python program  to find the maximum length of the subsequence 
# such that each adjacent element of the subsequence has at least
# one digit in common.


def longestSubsequence(curr, arr, prevDigit):

    # Base case: If we've processed all elements,
    # return 0
    if curr >= len(arr):
        return 0

    # Recurse by skipping the current number
    res = longestSubsequence(curr + 1, arr, prevDigit)

    hasCommonDigit = False

    # Convert the number to string to check its digits
    numStr = str(arr[curr])

    # Check if any digit in the current number matches
    # a previously used digit
    for digitChar in numStr:
        digit = int(digitChar)
        if prevDigit[digit] == 1:
            hasCommonDigit = True
            break

    # If there's a common digit, consider this number 
    # as part of the subsequence
    if hasCommonDigit:
      
        # Reset prevDigit to reflect the current number's digits
        prevDigit = [0] * 10

        # Mark the digits of the current number as used
        for digitChar in numStr:
            prevDigit[int(digitChar)] = 1

        # Recurse, adding the current number to the subsequence
        res = max(
            res, 1 + longestSubsequence(curr + 1, arr, prevDigit))

    return res


if __name__ == "__main__":
    arr = [1, 12, 44, 29, 33, 96, 89]

    prevDigit = [1] * 10
    res = longestSubsequence(0, arr, prevDigit)
    print(res)
C#
// C# program to find the maximum length of the subsequence
// such that each adjacent element of the subsequence has at
// least one digit in common.

using System;

class GfG {

      static int
    longestSubsequence(int curr, int[] arr,
                                      int[] prevDigit) {
        
        // Base case: If we've processed all elements,
        // return 0
        if (curr >= arr.Length)
            return 0;

        // Recurse by skipping the current number
        int res = longestSubsequence(
            curr + 1, arr, prevDigit);

        bool hasCommonDigit = false;

        // Convert the number to string to check its digits
        string numStr = arr[curr].ToString();

        // Check if any digit in the current number matches
        // a previously used digit
        foreach(char digitChar in numStr) {
            int digit = digitChar - '0';
            if (prevDigit[digit] == 1) {
                hasCommonDigit = true;
                break;
            }
        }

        // If there's a common digit, consider this number
        // as part of the subsequence
        if (hasCommonDigit) {
          
            // Reset prevDigit to reflect the current
            // number's digits
            Array.Clear(prevDigit, 0, prevDigit.Length);

            // Mark the digits of the current number as used
            foreach(char digitChar in numStr) {
                prevDigit[digitChar - '0'] = 1;
            }

            // Recurse, adding the current number to the
            // subsequence
            res = Math.Max(
                res,
                1
                    + longestSubsequence(
                        curr + 1, arr, prevDigit));
        }

        return res;
    }

    static void Main(string[] args) {
        
        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };

        int[] prevDigit = new int[10];
        Array.Fill(
            prevDigit,
            1);  
        int res = longestSubsequence(
            0, arr, prevDigit);
        Console.WriteLine(res);
    }
}
JavaScript
// JavaScript program to find the maximum length of the
// subsequence such that each adjacent element of the
// subsequence has at least one digit in common.

function longestSubsequenceWithCommonDigit(curr, arr,
                                           prevDigit) {
                                           
    // Base case: If we've processed all elements, return 0
    if (curr >= arr.length)
        return 0;

    // Recurse by skipping the current number
    let res = longestSubsequenceWithCommonDigit(
        curr + 1, arr, prevDigit);

    let hasCommonDigit = false;

    // Convert the number to string to check its digits
    let numStr = arr[curr].toString();

    // Check if any digit in the current number matches a
    // previously used digit
    for (let digitChar of numStr) {
        let digit = parseInt(digitChar);
        if (prevDigit[digit] === 1) {
            hasCommonDigit = true;
            break;
        }
    }

    // If there's a common digit, consider this number as
    // part of the subsequence
    if (hasCommonDigit) {
    
        // Reset prevDigit to reflect the current number's
        // digits
        prevDigit.fill(0);

        // Mark the digits of the current number as used
        for (let digitChar of numStr) {
            prevDigit[parseInt(digitChar)] = 1;
        }

        // Recurse, adding the current number to the
        // subsequence
        res = Math.max(
            res, 1
                     + longestSubsequenceWithCommonDigit(
                         curr + 1, arr, prevDigit));
    }

    return res;
}

 
let arr = [ 1, 12, 44, 29, 33, 96, 89 ];
let prevDigit = new Array(10).fill(
    1); 
let res
    = longestSubsequenceWithCommonDigit(0, arr, prevDigit);
console.log(res);

Output
5

[Expected Approach - 1] Using Tabulation - O(n*n) Time O(n) Space

This approach is similar to finding the Longest Increasing Subsequence (LIS). Here, we need to find subsequences where each adjacent pair of numbers shares at least one common digit.

We use a dp array where dp[i] stores the length of the longest subsequence that ends at the ith index. Initially, each number can form a subsequence of length 1 on its own, so we start by setting dp[i] = 1. For each number at index i, we look at all previous numbers (from j = 0 to i-1). If there is any common digit between the numbers at i and j, we can extend the subsequence ending at j by including the number at i. We then update dp[i] using:

  • dp[i] = max(dp[i], dp[j]+1)

The final result is the maximum value in the dp array, which gives the length of the longest subsequence where each adjacent pair of numbers shares at least one common digit.

C++
// C++ program to find max length of the subsequence such
// that each adjacent element of the subsequence has at 
// least one digit in common.

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int longestSubsequence(vector<int> &arr) {
    int n = arr.size();

    // Creating DP array of size n
    vector<int> dp(n);

    // Max length of the subsequence such that
  	// each adjacent elements of the subsequence have at
  	// least one digit in common.
    int maxLength = 0;

    for (int i = 0; i < n; i++) {
      
        // Each number can form a subsequence of 
      	// length 1 by itself
        dp[i] = 1;

        // Bool array to store the presence of digits 
      	// in the current number
        vector<bool> digitsOfCurrentNumber(10, false);

        int tem = arr[i];

        // Extracting and marking digits of current 'i'th element
        while (tem) {
            int digit = tem % 10;
            digitsOfCurrentNumber[digit] = true;
            tem /= 10;
        }

        // Updating DP array by checking for common digits
      	// with previous elements
        for (int j = 0; j < i; j++) {
            tem = arr[j];

            // Extracting digits of 'j'th element and checking for 
           // common digit with 'i'th element
            while (tem) {
                int digit = tem % 10;

                // If a common digit is found, we can add the current 
                // element to the subsequence
                if (digitsOfCurrentNumber[digit]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                    break;
                  
                    // No need to check further digits if a 
                  	// common one is found
                }
                tem /= 10;
            }
        }

        // Updating the maximum length of the 
      	// subsequence found so far
        maxLength = max(maxLength, dp[i]);
    }

    return maxLength;
}

int main() {

    vector<int> arr = {1, 12, 44, 29, 33, 96, 89};
    int res = longestSubsequence(arr);
    cout << res << endl;

    return 0;
}
Java
// Java program to find max length of the subsequence such
// that each adjacent element of the subsequence has at
// least one digit in common.

import java.util.*;

class GfG {

      static int
      longestSubsequence(int[] arr) {
        int n = arr.length;

        // Creating DP array of size n
        int[] dp = new int[n];

        // Max length of the subsequence such that each
        // adjacent elements of the subsequence have at
        // least one digit in common.
        int maxLength = 0;

        for (int i = 0; i < n; i++) {
          
            // Each number can form a subsequence of length
            // 1 by itself
            dp[i] = 1;

            // Bool array to store the presence of digits in
            // the current number
            boolean[] digitsOfCurrentNumber
                = new boolean[10];

            int tem = arr[i];

            // Extracting and marking digits of current
            // 'i'th element
            while (tem > 0) {
                int digit = tem % 10;
                digitsOfCurrentNumber[digit] = true;
                tem /= 10;
            }

            // Updating DP array by checking for common
            // digits with previous elements
            for (int j = 0; j < i; j++) {
                tem = arr[j];

                // Extracting digits of 'j'th element and
                // checking for common digit with 'i'th
                // element
                while (tem > 0) {
                    int digit = tem % 10;

                    // If a common digit is found, we can
                    // add the current element to the
                    // subsequence
                    if (digitsOfCurrentNumber[digit]) {
                        dp[i] = Math.max(dp[i], dp[j] + 1);
                        break;
                      
                        // No need to check further digits
                        // if a common one is found
                    }
                    tem /= 10;
                }
            }

            // Updating the maximum length of the
            // subsequence found so far
            maxLength = Math.max(maxLength, dp[i]);
        }

        return maxLength;
    }

    public static void main(String[] args) {
        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };
        int res = longestSubsequence(arr);
        System.out.println(res);
    }
}
Python
# Python program to find max length of the subsequence
# such that each adjacent element of the subsequence has at
# least one digit in common.

def longestSubsequence(arr):
    n = len(arr)

    # Creating DP array of size n
    dp = [0] * n

    # Max length of the subsequence such that each adjacent element
    # of the subsequence has at least one digit in common.
    maxLength = 0

    for i in range(n):
      
        # Each number can form a subsequence of length 1 by itself
        dp[i] = 1

        # Bool array to store the presence of digits in the current number
        digitsOfCurrentNumber = [False] * 10

        tem = arr[i]

        # Extracting and marking digits of current 'i'th element
        while tem > 0:
            digit = tem % 10
            digitsOfCurrentNumber[digit] = True
            tem //= 10

        # Updating DP array by checking for common 
        # digits with previous elements
        for j in range(i):
            tem = arr[j]

            # Extracting digits of 'j'th element and checking for common 
            # digit with 'i'th element
            while tem > 0:
                digit = tem % 10

                # If a common digit is found, we can add the current element
                # to the subsequence
                if digitsOfCurrentNumber[digit]:
                    dp[i] = max(dp[i], dp[j] + 1)
                    break  
                tem //= 10

        # Updating the maximum length of the subsequence found so far
        maxLength = max(maxLength, dp[i])

    return maxLength


if __name__ == "__main__":
    arr = [1, 12, 44, 29, 33, 96, 89]
 
    res = longestSubsequence(arr)
    print(res)
C#
// C# program to find max length of the subsequence such
// that each adjacent element of the subsequence has at
// least one digit in common.
using System;
using System.Linq;

class GfG {
    static int longestSubsequence(int[] arr) {
        int n = arr.Length;

        // Creating DP array of size n
        int[] dp = new int[n];

        // Max length of the subsequence such that each
        // adjacent element of the subsequence has at least
        // one digit in common.
        int maxLength = 0;

        for (int i = 0; i < n; i++) {
          
            // Each number can form a subsequence of length
            // 1 by itself
            dp[i] = 1;

            // Bool array to store the presence of digits in
            // the current number
            bool[] digitsOfCurrentNumber = new bool[10];

            int tem = arr[i];

            // Extracting and marking digits of current
            // 'i'th element
            while (tem > 0) {
                int digit = tem % 10;
                digitsOfCurrentNumber[digit] = true;
                tem /= 10;
            }

            // Updating DP array by checking for common
            // digits with previous elements
            for (int j = 0; j < i; j++) {
                tem = arr[j];

                // Extracting digits of 'j'th element and
                // checking for common digit with 'i'th
                // element
                while (tem > 0) {
                    int digit = tem % 10;

                    // If a common digit is found, we can
                    // add the current element to the
                    // subsequence
                    if (digitsOfCurrentNumber[digit]) {
                        dp[i] = Math.Max(dp[i], dp[j] + 1);
                        break;
                    }
                    tem /= 10;
                }
            }

            // Updating the maximum length of the
            // subsequence found so far
            maxLength = Math.Max(maxLength, dp[i]);
        }

        return maxLength;
    }

    static void Main() {
        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };

        int res = longestSubsequence(arr);
        Console.WriteLine(res);
    }
}
JavaScript
// JavaScript program to find the max length of the
// subsequence such that each adjacent element of the
// subsequence has at least one digit in common.

function longestSubsequence(arr) {
    const n = arr.length;

    // Creating DP array of size n
    const dp = new Array(n).fill(0);

    // Max length of the subsequence such that each adjacent
    // elements of the subsequence have at least one digit
    // in common.
    let maxLength = 0;

    for (let i = 0; i < n; i++) {
    
        // Each number can form a subsequence of length 1 by
        // itself
        dp[i] = 1;

        // Bool array to store the presence of digits in the
        // current number
        const digitsOfCurrentNumber
            = new Array(10).fill(false);

        let temp = arr[i];

        // Extracting and marking digits of the current
        // 'i'th element
        while (temp > 0) {
            const digit = temp % 10;
            digitsOfCurrentNumber[digit] = true;
            temp = Math.floor(temp / 10);
        }

        // Updating DP array by checking for common digits
        // with previous elements
        for (let j = 0; j < i; j++) {
            temp = arr[j];

            // Extracting digits of 'j'th element and
            // checking for common digit with 'i'th element
            while (temp > 0) {
                const digit = temp % 10;

                // If a common digit is found, we can add
                // the current element to the subsequence
                if (digitsOfCurrentNumber[digit]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                    break; 
                }
                temp = Math.floor(temp / 10);
            }
        }

        // Updating the maximum length of the subsequence
        // found so far
        maxLength = Math.max(maxLength, dp[i]);
    }

    return maxLength;
}
 
const arr = [ 1, 12, 44, 29, 33, 96, 89 ];
const res = longestSubsequence(arr);
console.log(res);

Output
5

[Expected Approach - 2] Using Tabulation - O(n) Time O(n) Space

This apporach is similar to the above one, but here for every i, we are not iterating from 0 to i-1. The state we have used is dp[i][j] denotes the length of the longest subsequence till i th index having the last element-containing j as a digit.

Base Case:

dp[0][j] = 1 for all j present in 0th element

Recurrence Relation:

For each element arr[i]:

1. Identify the digit present in arr[i]: Let digitsOfCurrentNumber be a boolean array where digitsOfCurrentNumber[d] = 1 if digit d is present in arr[i-1], and otherwise 0.

2. Maximize the subsequence length for each digit j: For each digit that appears in arr[i], update currentMax:

  • currentMax = max(currentMax, dp[i-1][d]+1),
  • This means that if digit d appeared in the current element, the subsequence can extend from the previous subsequence ending with d, by adding the current element.

3. Update the DP table: For each j from 0 to 9, update the dp table, if digit j present in current element:

  • if current j is present in arr[i], dp[i][j] = currentMax
  • otherwise, dp[i][j] = dp[i-1][j]

The answer will be maximum value present in last row of dp table.

C++
// C++ program to find max length of the subsequence
// such that each adjacent element  of the subsequence has
// at least one digit in common.

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int longestSubsequence(vector<int> &arr) {
    int n = arr.size();

    // DP matrix: dp[i][j] denotes the length of the longest 
   // subsequence till i-th element
    // where the last element contains the digit 'j'
    vector<vector<int>> dp(n + 1, vector<int>(10, 0));

    // Iterate through each element in the array
    for (int i = 1; i <= n; i++) {
        int currentMax = 0;
        int tem = arr[i - 1];

        // Track the digits present in the current number
        vector<bool> digitsOfCurrentNumber(10, false);

        // Extract digits from current element and 
      	// maximize currentMax
        while (tem) {
            int digit = tem % 10;
            digitsOfCurrentNumber[digit] = true;
            currentMax = max(currentMax, dp[i - 1][digit] + 1);
            tem /= 10;
        }

        // Update DP matrix based on the common digits
        for (int j = 0; j < 10; j++) {
            if (digitsOfCurrentNumber[j]) {
                dp[i][j] = currentMax;
            }
            else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    // Find the maximum subsequence length from the
  	// last row of dp
    int maxLength = 0;
    for (int i = 0; i < 10; i++) {
        maxLength = max(maxLength, dp[n][i]);
    }

    return maxLength;
}

int main() {
    
    vector<int> arr = {1, 12, 44, 29, 33, 96, 89};
 
    int res = longestSubsequence(arr);
    cout << res << endl;

    return 0;
}
Java
// Java program to find max length of the subsequence
// such that each adjacent element of the subsequence
// has at least one digit in common.

import java.util.*;

class GfG {

    static int longestSubsequence(int[] arr) {
        int n = arr.length;

        // DP matrix: dp[i][j] denotes the length of the
        // longest subsequence till i-th element where the
        // last element contains the digit 'j'
        int[][] dp = new int[n + 1][10];

        // Iterate through each element in the array
        for (int i = 1; i <= n; i++) {
            int currentMax = 0;
            int tem = arr[i - 1];

            // Track the digits present in the current
            // number
            boolean[] digitsOfCurrentNumber
                = new boolean[10];

            // Extract digits from current element and
            // maximize currentMax
            while (tem > 0) {
                int digit = tem % 10;
                digitsOfCurrentNumber[digit] = true;
                currentMax = Math.max(currentMax,
                                      dp[i - 1][digit] + 1);
                tem /= 10;
            }

            // Update DP matrix based on the common digits
            for (int j = 0; j < 10; j++) {
                if (digitsOfCurrentNumber[j]) {
                    dp[i][j] = currentMax;
                }
                else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }

        // Find the maximum subsequence length from the last
        // row of dp
        int maxLength = 0;
        for (int i = 0; i < 10; i++) {
            maxLength = Math.max(maxLength, dp[n][i]);
        }

        return maxLength;
    }

    public static void main(String[] args) {
      
        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };

        int res = longestSubsequence(arr);
        System.out.println(res);
    }
}
Python
# Python program to find max length of the subsequence 
# such that each adjacent element of the subsequence has
# at least one digit in common.

def longestSubsequence(arr):
    n = len(arr)

    # DP matrix: dp[i][j] denotes the length of the 
    # longest subsequence till i-th element
    # where the last element contains the digit 'j'
    dp = [[0] * 10 for _ in range(n + 1)]

    # Iterate through each element in the array
    for i in range(1, n + 1):
        currentMax = 0
        tem = arr[i - 1]

        # Track the digits present in the current number
        digitsOfCurrentNumber = [False] * 10

        # Extract digits from the current element 
        # and maximize currentMax
        while tem > 0:
            digit = tem % 10
            digitsOfCurrentNumber[digit] = True
            currentMax = max(currentMax, dp[i - 1][digit] + 1)
            tem //= 10

        # Update DP matrix based on the common digits
        for j in range(10):
            if digitsOfCurrentNumber[j]:
                dp[i][j] = currentMax
            else:
                dp[i][j] = dp[i - 1][j]

    # Find the maximum subsequence length from the
    # last row of dp
    maxLength = 0
    for i in range(10):
        maxLength = max(maxLength, dp[n][i])

    return maxLength


arr = [1, 12, 44, 29, 33, 96, 89]
 
res = longestSubsequence(arr)
print(res)
C#
// C# program to find max length of the subsequence such 
// that each adjacent element of the subsequence has at 
// least one digit in common.

using System;

class GfG {
    static int longestSubsequence(int[] arr) {
        int n = arr.Length;

        // DP matrix: dp[i][j] denotes the length of the
        // longest subsequence till i-th element where the
        // last element contains the digit 'j'
        int[, ] dp = new int[n + 1, 10];

        // Iterate through each element in the array
        for (int i = 1; i <= n; i++) {
            int currentMax = 0;
            int tem = arr[i - 1];

            // Track the digits present in the current
            // number
            bool[] digitsOfCurrentNumber = new bool[10];

            // Extract digits from the current element and
            // maximize currentMax
            while (tem > 0) {
                int digit = tem % 10;
                digitsOfCurrentNumber[digit] = true;
                currentMax = Math.Max(currentMax,
                                      dp[i - 1, digit] + 1);
                tem /= 10;
            }

            // Update DP matrix based on the common digits
            for (int j = 0; j < 10; j++) {
                if (digitsOfCurrentNumber[j]) {
                    dp[i, j] = currentMax;
                }
                else {
                    dp[i, j] = dp[i - 1, j];
                }
            }
        }

        // Find the maximum subsequence length from the last
        // row of dp
        int maxLength = 0;
        for (int i = 0; i < 10; i++) {
            maxLength = Math.Max(maxLength, dp[n, i]);
        }

        return maxLength;
    }

    static void Main() {
        int[] arr = { 1, 12, 44, 29, 33, 96, 89 };
        int res = longestSubsequence(arr);
        Console.WriteLine(res);
    }
}
JavaScript
// JavaScript program to find max length of the subsequence
// such that each adjacent element of the subsequence has at
// least one digit in common.

function longestSubsequence(arr) {

     const n = arr.length;
    
    // DP matrix: dp[i][j] denotes the length of the longest
    // subsequence till i-th element where the last element
    // contains the digit 'j'
    let dp = Array.from({length : n + 1},
                        () => Array(10).fill(0));

    // Iterate through each element in the array
    for (let i = 1; i <= n; i++) {
        let currentMax = 0;
        let tem = arr[i - 1];

        // Track the digits present in the current number
        let digitsOfCurrentNumber = Array(10).fill(false);

        // Extract digits from the current element and
        // maximize currentMax
        while (tem > 0) {
            const digit = tem % 10;
            digitsOfCurrentNumber[digit] = true;
            currentMax = Math.max(currentMax,
                                  dp[i - 1][digit] + 1);
            tem = Math.floor(tem / 10);
        }

        // Update DP matrix based on the common digits
        for (let j = 0; j < 10; j++) {
            if (digitsOfCurrentNumber[j]) {
                dp[i][j] = currentMax;
            }
            else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    // Find the maximum subsequence length from the last row
    // of dp
    let maxLength = 0;
    for (let i = 0; i < 10; i++) {
        maxLength = Math.max(maxLength, dp[n][i]);
    }

    return maxLength;
}

const arr = [ 1, 12, 44, 29, 33, 96, 89 ];
const res = longestSubsequence(arr);
console.log(res);

Output
5

[Expected Approach - 3] Using Space Optimized DP - O(n) Time O(1) Space

In this approach, we optimize the DP table by reducing its size from n × 10 to 1D array of size 10. We use a 1D DP array where dp[i] denotes the length of longest subsequence having the last element containing i as a digit.
For each element, we extract the digits and update the dp array as follows:
We iterate through all digits present in the current element. For each digit d, we calculate the currentVal as the maximum value of dp[d](the longest subsequence ending with d) to ensure that subsequences are extended properly.

  • currentVal = max(currentVal, dp[d]) for all d present in current element.

After calculating currentVal, we update the dp[d] for each digit d present in the current element, ensuring the subsequences are extended accordingly.

C++
// C++ program to find max length of the subsequence
// such that each adjacent element of the subsequence
// has at least one digit in common .

#include <iostream>
#include <vector>

using namespace std;

int longestSubsequence(vector<int> &arr) {

    //  Creating DP array of size 10
    //  where dp[i] denotes the length of longest
    //   subsequence having the last element containing 'i' as a digit.

    int n = arr.size();
  
    // DP array to track the longest subsequence
  	// for each digit (0-9)
    vector<int> dp(10, 0);

    // Initialize the maximum length of subsequence
    int maxLength = 0;

    for (int i = 0; i < n; i++) {
        int currentMax = 0;
        int currentElement = arr[i];

        // Bool array to store the presence of digits
      	// in the current element
        vector<bool> digitsOfCurrentElement(10, false);

        // Extracting digits of the current element and
      	// maximizing currentMax
        while (currentElement) {
            int digit = currentElement % 10;
            digitsOfCurrentElement[digit] = true;
            currentMax = max(currentMax, dp[digit] + 1);
            currentElement /= 10;
        }

        // Update the DP array for all digits present 
      	// in the current element
        for (int digit = 0; digit < 10; digit++) {
            if (digitsOfCurrentElement[digit]) {
                dp[digit] = currentMax;
            }
        }

        // Update the maximum length of subsequence
      	// found so far
        maxLength = max(maxLength, currentMax);
    }

    return maxLength;
}

int main() {
    vector<int> arr = {1, 12, 44, 29, 33, 96, 89};
    int res = longestSubsequence(arr);
    cout << res << endl;

    return 0;
}
Java
// Java program to find max length of the subsequence
// such that each adjacent element of the subsequence has
// at least one digit in common .


import java.util.*;

class GfG {

      static int
    longestSubsequence(int[] arr) {

        //   Creating DP array of size 10
        //   where dp[i] denotes the length of longest
        //   subsequence having the last element containing
        //   'i' as a digit.

        int n = arr.length;
        // DP array to track the longest subsequence for
        // each digit (0-9)
        int[] dp = new int[10];

        // Initialize the maximum length of subsequence
        int maxLength = 0;

        for (int i = 0; i < n; i++) {
            int currentMax = 0;
            int currentElement = arr[i];

            // Bool array to store the presence of digits in
            // the current element
            boolean[] digitsOfCurrentElement
                = new boolean[10];

            // Extracting digits of the current element and
            // maximizing currentMax
            while (currentElement > 0) {
                int digit = currentElement % 10;
                digitsOfCurrentElement[digit] = true;
                currentMax
                    = Math.max(currentMax, dp[digit] + 1);
                currentElement /= 10;
            }

            // Update the DP array for all digits present in
            // the current element
            for (int digit = 0; digit < 10; digit++) {
                if (digitsOfCurrentElement[digit]) {
                    dp[digit] = currentMax;
                }
            }

            // Update the maximum length of subsequence
            // found so far
            maxLength = Math.max(maxLength, currentMax);
        }

        return maxLength;
    }

    public static void main(String[] args) {
        int[] arr = {
            1, 12, 44, 29, 33, 96, 89
        };  
        int res = longestSubsequence(arr);
        System.out.println(res);
    }
}
Python
# Java program to find max length of the subsequence
# such that each adjacent element of the subsequence has 
# at least one digit in common .

def longestSubsequence(arr):

  #  Creates a DP array of size 10 where dp[i] denotes 
  # the length of the longest subsequence having the last
  # element containing 'i' as a digit.

    # Initialize DP array of size 10
    dp = [0] * 10

    # Initialize the maximum length of subsequence
    maxLength = 0

    # Iterate through each element in the array
    for num in arr:
        currentMax = 0

        # Bool array to store the presence of digits 
        # in the current element
        digitsOfCurrentElement = [False] * 10

        # Extract digits of the current element and 
        # maximize currentMax
        temp = num
        while temp > 0:
            digit = temp % 10
            digitsOfCurrentElement[digit] = True
            currentMax = max(currentMax, dp[digit] + 1)
            temp //= 10

        # Update the DP array for all digits present in
        # the current element
        for digit in range(10):
            if digitsOfCurrentElement[digit]:
                dp[digit] = currentMax

        # Update the maximum length of subsequence found so far
        maxLength = max(maxLength, currentMax)

    return maxLength


arr = [1, 12, 44, 29, 33, 96, 89]
res = longestSubsequence(arr)
print(res)
C#
// C# program to find max length of the subsequence such
// that each adjacent element of the subsequence has at
// least one digit in common .

using System;
using System.Collections.Generic;

class GfG {
    static int
    longestSubsequence(List<int> arr) {
      
        int[] dp = new int[10];

        // Initialize the maximum length of subsequence
        int maxLength = 0;

        // Iterate through each element in the array
        foreach(int num in arr) {
            int currentMax = 0;

            // Bool array to store the presence of digits in
            // the current element
            bool[] digitsOfCurrentElement = new bool[10];

            // Extract digits of the current element and
            // maximize currentMax
            int temp = num;
            while (temp > 0) {
                int digit = temp % 10;
                digitsOfCurrentElement[digit] = true;
                currentMax
                    = Math.Max(currentMax, dp[digit] + 1);
                temp /= 10;
            }

            // Update the DP array for all digits present in
            // the current element
            for (int digit = 0; digit < 10; digit++) {
                if (digitsOfCurrentElement[digit]) {
                    dp[digit] = currentMax;
                }
            }

            // Update the maximum length of subsequence
            // found so far
            maxLength = Math.Max(maxLength, currentMax);
        }

        return maxLength;
    }

    static void Main(string[] args) {
      
        List<int> arr
            = new List<int>{ 1, 12, 44, 29, 33, 96, 89 };
        int res = longestSubsequence(arr);
        Console.WriteLine(res);
    }
}
JavaScript
// JavaScript program to find max length of the subsequence
// such that each adjacent element of the subsequence has at
// least one digit in common .

function longestSubsequence(arr) {

    // Initialize DP array of size 10
    let dp = new Array(10).fill(0);
    
    // Initialize the maximum length of subsequence
    let maxLength = 0;
    
    // Iterate through each element in the array
    for (let num of arr) {
        let currentMax = 0;
        
        // Bool array to store the presence of digits 
        // in the current element
        let digitsOfCurrentElement = new Array(10).fill(false);
        
        // Extract digits of the current element and 
        // maximize currentMax
        let temp = num;
        while (temp > 0) {
            let digit = temp % 10;
            digitsOfCurrentElement[digit] = true;
            currentMax = Math.max(currentMax, dp[digit] + 1);
            temp = Math.floor(temp / 10);
        }
        
        // Update the DP array for all digits present in 
        // the current element
        for (let digit = 0; digit < 10; digit++) {
            if (digitsOfCurrentElement[digit]) {
                dp[digit] = currentMax;
            }
        }
        
        // Update the maximum length of subsequence found so far
        maxLength = Math.max(maxLength, currentMax);
    }

    return maxLength;
}

 
const arr = [1, 12, 44, 29, 33, 96, 89];
const res = longestSubsequence(arr);
console.log(res);

Output
5

Next Article
Article Tags :
Practice Tags :

Similar Reads