Open In App

Print all possible ways to write N as sum of two or more positive integers

Last Updated : 02 Feb, 2022
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given an integer N, the task is to print all the possible ways in which N can be written as the sum of two or more positive integers.
Examples: 
 

Input: N = 4 
Output: 
1 1 1 1 
1 1 2 
1 3 
2 2 
Input: N = 3 
Output: 
1 1 1 
1 2 
 


 


Approach: The idea is to use recursion to solve this problem. The idea is to consider every integer from 1 to N such that the sum N can be reduced by this number at each recursive call and if at any recursive call N reduces to zero then we will print the answer stored in the vector. Below are the steps for recursion: 
 

  1. Get the number N whose sum has to be broken into two or more positive integers.
  2. Recursively iterate from value 1 to N as index i:
  • Base Case: If the value called recursively is 0, then print the current vector as this is one of the ways to broke N into two or more positive integers. 
     
if (n == 0)
    printVector(arr);
  • Recursive Call: If the base case is not met, then Recursively iterate from [i, N - i]. Push the current element j into vector(say arr) and recursively iterate for the next index and after this recursion ends then pop the element j inserted previously: 
     
for j in range[i, N]:
    arr.push_back(j);
    recursive_function(arr, j + 1, N - j);
    arr.pop_back(j);   


Below is the implementation of the above approach:
 

C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to print the values stored
// in vector arr
void printVector(vector<int>& arr)
{
    if (arr.size() != 1) {

        // Traverse the vector arr
        for (int i = 0; i < arr.size(); i++) {
            cout << arr[i] << " ";
        }
        cout << endl;
    }
}

// Recursive function to print different
// ways in which N can be written as
// a sum of at 2 or more positive integers
void findWays(vector<int>& arr, int i, int n)
{
    // If n is zero then print this
    // ways of breaking numbers
    if (n == 0)
        printVector(arr);

    // Start from previous element
    // in the representation till n
    for (int j = i; j <= n; j++) {

        // Include current element
        // from representation
        arr.push_back(j);

        // Call function again
        // with reduced sum
        findWays(arr, j, n - j);

        // Backtrack to remove current
        // element from representation
        arr.pop_back();
    }
}

// Driver Code
int main()
{
    // Given sum N
    int n = 4;

    // To store the representation
    // of breaking N
    vector<int> arr;

    // Function Call
    findWays(arr, 1, n);

    return 0;
}
Java
// Java program for the above approach
import java.util.*;

class GFG{

// Function to print the values stored
// in vector arr
static void printVector(ArrayList<Integer> arr)
{
    if (arr.size() != 1)
    {
        
        // Traverse the vector arr
        for(int i = 0; i < arr.size(); i++)
        {
            System.out.print(arr.get(i) + " ");
        }
        System.out.println();
    }
}

// Recursive function to print different
// ways in which N can be written as
// a sum of at 2 or more positive integers
static void findWays(ArrayList<Integer> arr, 
                     int i, int n)
{
    
    // If n is zero then print this
    // ways of breaking numbers
    if (n == 0)
        printVector(arr);

    // Start from previous element
    // in the representation till n
    for(int j = i; j <= n; j++) 
    {
        
        // Include current element
        // from representation
        arr.add(j);

        // Call function again
        // with reduced sum
        findWays(arr, j, n - j);

        // Backtrack to remove current
        // element from representation
        arr.remove(arr.size() - 1);
    }
}

// Driver code
public static void main(String[] args)
{
    
    // Given sum N
    int n = 4;
    
    // To store the representation
    // of breaking N
    ArrayList<Integer> arr = new ArrayList<Integer>();
    
    // Function call
    findWays(arr, 1, n);
}
}

// This code is contributed by offbeat
Python3
# Python3 program for the above approach

# Function to print the values stored
# in vector arr
def printVector(arr):

    if (len(arr) != 1):

        # Traverse the vector arr
        for i in range(len(arr)):
            print(arr[i], end = " ")
        print()    

# Recursive function to print different
# ways in which N can be written as
# a sum of at 2 or more positive integers
def findWays(arr, i, n):

    # If n is zero then print this
    # ways of breaking numbers
    if (n == 0):
        printVector(arr)

    # Start from previous element
    # in the representation till n
    for j in range(i, n + 1):

        # Include current element
        # from representation
        arr.append(j)

        # Call function again
        # with reduced sum
        findWays(arr, j, n - j)

        # Backtrack to remove current
        # element from representation
        del arr[-1]
        
# Driver Code
if __name__ == '__main__':

    # Given sum N
    n = 4

    # To store the representation
    # of breaking N
    arr = []

    # Function Call
    findWays(arr, 1, n)

# This code is contributed by mohit kumar 29
C#
// C# program for the above approach 
using System;
using System.Collections.Generic;

class GFG{ 

// Function to print the values stored 
// in vector arr 
static void printList(List<int> arr) 
{ 
    if (arr.Count != 1) 
    { 
        
        // Traverse the vector arr 
        for(int i = 0; i < arr.Count; i++) 
        { 
            Console.Write(arr[i] + " "); 
        } 
        Console.WriteLine(); 
    } 
} 

// Recursive function to print different 
// ways in which N can be written as 
// a sum of at 2 or more positive integers 
static void findWays(List<int> arr, 
                     int i, int n) 
{ 
    
    // If n is zero then print this 
    // ways of breaking numbers 
    if (n == 0) 
        printList(arr); 

    // Start from previous element 
    // in the representation till n 
    for(int j = i; j <= n; j++) 
    { 
        
        // Include current element 
        // from representation 
        arr.Add(j); 

        // Call function again 
        // with reduced sum 
        findWays(arr, j, n - j); 

        // Backtrack to remove current 
        // element from representation 
        arr.RemoveAt(arr.Count - 1); 
    } 
} 

// Driver code 
public static void Main(String[] args) 
{ 
    
    // Given sum N 
    int n = 4; 
    
    // To store the representation 
    // of breaking N 
    List<int> arr = new List<int>(); 
    
    // Function call 
    findWays(arr, 1, n); 
} 
} 

// This code is contributed by 29AjayKumar
JavaScript
<script>

// Javascript program for the above approach

// Function to print the values stored
// in vector arr
function printVector(arr)
{
    if (arr.length != 1) {

        // Traverse the vector arr
        for (var i = 0; i < arr.length; i++) {
            document.write( arr[i] + " ");
        }
        document.write("<br>");
    }
}

// Recursive function to print different
// ways in which N can be written as
// a sum of at 2 or more positive integers
function findWays(arr, i, n)
{
    // If n is zero then print this
    // ways of breaking numbers
    if (n == 0)
        printVector(arr);

    // Start from previous element
    // in the representation till n
    for (var j = i; j <= n; j++) {

        // Include current element
        // from representation
        arr.push(j);

        // Call function again
        // with reduced sum
        findWays(arr, j, n - j);

        // Backtrack to remove current
        // element from representation
        arr.pop();
    }
}

// Driver Code
// Given sum N
var n = 4;
// To store the representation
// of breaking N
var arr = [];
// Function Call
findWays(arr, 1, n);

</script>

Output: 
1 1 1 1 
1 1 2 
1 3 
2 2

 

Time Complexity: O(2N
Auxiliary Space: O(N2)
 


Next Article

Similar Reads