Search in a row wise and column wise sorted matrix
Last Updated :
22 Mar, 2025
Given a matrix mat[][] and an integer x, the task is to check if x is present in mat[][] or not. Every row and column of the matrix is sorted in increasing order.
Examples:
Input: x = 62, mat[][] = [[3, 30, 38],
[20, 52, 54],
[35, 60, 69]]
Output: false
Explanation: 62 is not present in the matrix.
Input: x = 55, mat[][] = [[18, 21, 27],
[38, 55, 67]]
Output: true
Explanation: mat[1][1] is equal to 55.
Input: x = 35, mat[][] = [[3, 30, 38],
[20, 52, 54],
[35, 60, 69]]
Output: true
Explanation: mat[2][0] is equal to 35.
[Naive Approach] Comparing with all elements - O(n*m) Time and O(1) Space
The simple idea is to traverse the complete matrix and search for the target element. If the target element is found, return true. Otherwise, return false.
C++
// C++ program to search an element in row-wise
// and column-wise sorted matrix
#include <iostream>
#include <vector>
using namespace std;
bool matSearch(vector<vector<int>> &mat, int x) {
int n = mat.size(), m = mat[0].size();
// Iterate over all the elements to find x
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(mat[i][j] == x)
return true;
}
}
// If x was not found, return false
return false;
}
int main() {
vector<vector<int>> mat = {{3, 30, 38},
{20, 52, 54},
{35, 60, 69}};
int x = 35;
if(matSearch(mat, x))
cout << "true";
else
cout << "false";
return 0;
}
Java
// Java program to search an element in row-wise
// and column-wise sorted matrix
class GfG {
static boolean matSearch(int[][] mat, int x) {
int n = mat.length, m = mat[0].length;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(mat[i][j] == x)
return true;
}
}
// If x was not found, return false
return false;
}
public static void main(String[] args) {
int[][] mat = {{3, 30, 38},
{20, 52, 54},
{35, 60, 69}};
int x = 35;
if(matSearch(mat, x))
System.out.println("true");
else
System.out.println("false");
}
}
Python
# Python program to search an element in row-wise
# and column-wise sorted matrix
def matSearch(mat, x):
n = len(mat)
m = len(mat[0])
for i in range(n):
for j in range(m):
if mat[i][j] == x:
return True
# If x was not found, return false
return False
if __name__ == "__main__":
mat = [[3, 30, 38],
[20, 52, 54],
[35, 60, 69]]
x = 35
if matSearch(mat, x):
print("true")
else:
print("false")
C#
// C# program to search an element in row-wise
// and column-wise sorted matrix
using System;
class GfG {
static bool matSearch(int[][] mat, int x) {
int n = mat.Length, m = mat[0].Length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (mat[i][j] == x)
return true;
}
}
// If x was not found, return false
return false;
}
static void Main() {
int[][] mat = new int[][] {
new int[] {3, 30, 38},
new int[] {20, 52, 54},
new int[] {35, 60, 69}
};
int x = 35;
if (matSearch(mat, x))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
// Java Script program to search an element in row-wise
// and column-wise sorted matrix
function matSearch(mat, x) {
const n = mat.length, m = mat[0].length;
for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
if (mat[i][j] === x)
return true;
}
}
// If x was not found, return false
return false;
}
// Driver Code
const mat = [ [ 3, 30, 38 ],
[ 20, 52, 54 ],
[ 35, 60, 69 ] ];
const x = 35;
if (matSearch(mat, x))
console.log("true");
else
console.log("false");
[Better Approach] Binary Search - O(n*logm) Time and O(1) Space:
To optimize the above approach we are going to use the Binary Search algorithm.
The problem specifies that each row in the given matrix is sorted in ascending order. Instead of searching each column sequentially, we can efficiently apply Binary Search on each row to determine if the target is present.
C++
// C++ program to search an element in row-wise
// and column-wise sorted matrix
#include <iostream>
#include <vector>
using namespace std;
bool binarySearch(vector<int> &mat, int target) {
int n = mat.size();
int low = 0, high = n - 1;
// Standard binary search algorithm
while (low <= high) {
int mid = (low + high) / 2;
if (mat[mid] == target)
return true; // Element found
else if (target > mat[mid])
low = mid + 1; // Search in the right half
else
high = mid - 1; // Search in the left half
}
return false; // Element not found
}
bool matSearch(vector<vector<int>> &mat, int x) {
int n = mat.size();
// Iterate over each row and perform binary search
for (int i = 0; i < n; i++) {
if (binarySearch(mat[i], x))
return true; // Element found in one of the rows
}
return false; // Element not found in any row
}
int main() {
vector<vector<int>> mat = {{3, 30, 38},
{20, 52, 54},
{35, 60, 69}};
int x = 35;
if(matSearch(mat, x))
cout << "true";
else
cout << "false";
return 0;
}
Java
// Java program to search an element in row-wise
// and column-wise sorted matrix
class GfG {
public static boolean binarySearch(int[] mat, int target) {
int low = 0, high = mat.length - 1;
// Standard binary search algorithm
while (low <= high) {
int mid = (low + high) / 2;
if (mat[mid] == target)
return true; // Element found
else if (target > mat[mid])
low = mid + 1; // Search in the right half
else
high = mid - 1; // Search in the left half
}
return false; // Element not found
}
static boolean matSearch(int[][] mat, int x) {
int n = mat.length; // Number of rows
// Iterate over each row and perform binary search
for (int i = 0; i < n; i++) {
if (binarySearch(mat[i], x))
return true; // Element found in one of the rows
}
return false; // Element not found in any row
}
public static void main(String[] args) {
int[][] mat = {{3, 30, 38},
{20, 52, 54},
{35, 60, 69}};
int x = 35;
if(matSearch(mat, x))
System.out.println("true");
else
System.out.println("false");
}
}
Python
# Python program to search an element in row-wise
# and column-wise sorted matrix
def binarySearch(mat, target):
n = len(mat)
low, high = 0, n - 1
# Standard binary search algorithm
while low <= high:
mid = (low + high) // 2 # Midpoint index
if mat[mid] == target:
return True # Element found
elif target > mat[mid]:
low = mid + 1 # Search in the right half
else:
high = mid - 1 # Search in the left half
return False # Element not found
def matSearch(mat, x):
n = len(mat)
m = len(mat[0])
# Iterate over each row and perform binary search
for i in range(n):
if binarySearch(mat[i], x):
return True # Element found in one of the rows
return False # Element not found in any row
if __name__ == "__main__":
mat = [
[3, 30, 38],
[20, 52, 54],
[35, 60, 69]
]
x = 35
if matSearch(mat, x):
print("true")
else:
print("false")
C#
// C# program to search an element in row-wise
// and column-wise sorted matrix
using System;
class GfG {
// Function to perform binary search on a sorted row (1D array)
static bool BinarySearch(int[] mat, int target)
{
int low = 0, high = mat.Length - 1;
// Standard binary search algorithm
while (low <= high)
{
int mid = (low + high) / 2;
if (mat[mid] == target)
return true; // Element found
else if (target > mat[mid])
low = mid + 1; // Search in the right half
else
high = mid - 1; // Search in the left half
}
return false; // Element not found
}
// Function to search an element in a row-wise sorted matrix
static bool matSearch(int[][] mat, int x) {
int n = mat.Length;
// Iterate over each row and perform binary search
for (int i = 0; i < n; i++)
{
if (BinarySearch(mat[i], x))
return true; // Element found in one of the rows
}
return false; // Element not found in any row
}
static void Main() {
int[][] mat = new int[][] {
new int[] {3, 30, 38},
new int[] {20, 52, 54},
new int[] {35, 60, 69}
};
int x = 35;
if (matSearch(mat, x))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
// JavaScript program to search an element in row-wise
// and column-wise sorted matrix
function binarySearch(mat, target) {
let low = 0, high = mat.length - 1;
// Standard binary search algorithm
while (low <= high) {
let mid = Math.floor((low + high) / 2); // Use Math.floor() to get an integer index
if (mat[mid] === target)
return true; // Element found
else if (target > mat[mid])
low = mid + 1; // Search in the right half
else
high = mid - 1; // Search in the left half
}
return false; // Element not found
}
function matSearch(mat, x) {
let n = mat.length;
// Iterate over each row and perform binary search
for (let i = 0; i < n; i++) {
if (binarySearch(mat[i], x))
return true; // Element found in one of the rows
}
return false; // Element not found in any row
}
// Driver Code
let mat = [
[3, 30, 38],
[20, 52, 54],
[35, 60, 69]
];
let x = 35;
if (matSearch(mat, x))
console.log("true");
else
console.log("false");
[Expected Approach] Eliminating rows or columns - O(n + m) Time and O(1) Space:
The idea is to remove a row or column in each comparison until an element is found. Start searching from the top-right corner of the matrix. There are 3 possible cases:
- x is greater than the current element: This ensures that all the elements in the current row are smaller than the given number as the pointer is already at the right-most element and the row is sorted. Thus, the entire row gets eliminated and continues the search from the next row.
- x is smaller than the current element: This ensures that all the elements in the current column are greater than the given number. Thus, the entire column gets eliminated and continues the search from the previous column, i.e. the column on the immediate left.
- The given number is equal to the current number: This will end the search.
Illustration:
C++
// C++ program to search an element in row-wise
// and column-wise sorted matrix
#include <iostream>
#include <vector>
using namespace std;
bool matSearch(vector<vector<int>> &mat, int x) {
int n = mat.size(), m = mat[0].size();
int i = 0, j = m - 1;
while(i < n && j >= 0) {
// If x > mat[i][j], then x will be greater
// than all elements to the left of
// mat[i][j] in row i, so increment i
if(x > mat[i][j]) {
i++;
}
// If x < mat[i][j], then x will be smaller
// than all elements to the bottom of
// mat[i][j] in column j, so decrement j
else if(x < mat[i][j]) {
j--;
}
// If x = mat[i][j], return true
else {
return true;
}
}
// If x was not found, return false
return false;
}
int main() {
vector<vector<int>> mat = {{3, 30, 38},
{20, 52, 54},
{35, 60, 69}};
int x = 35;
if(matSearch(mat, x))
cout << "true";
else
cout << "false";
return 0;
}
Java
// Java program to search an element in row-wise
// and column-wise sorted matrix
import java.util.*;
class GfG {
static boolean matSearch(int[][] mat, int x) {
int n = mat.length, m = mat[0].length;
int i = 0, j = m - 1;
while (i < n && j >= 0) {
// If x > mat[i][j], then x will be greater
// than all elements to the left of
// mat[i][j] in row i, so increment i
if (x > mat[i][j]) {
i++;
}
// If x < mat[i][j], then x will be smaller
// than all elements to the bottom of
// mat[i][j] in column j, so decrement j
else if (x < mat[i][j]) {
j--;
}
// If x = mat[i][j], return true
else {
return true;
}
}
// If x was not found, return false
return false;
}
public static void main(String[] args) {
int[][] mat = {
{3, 30, 38},
{20, 52, 54},
{35, 60, 69}
};
int x = 35;
if (matSearch(mat, x))
System.out.println("true");
else
System.out.println("false");
}
}
Python
# Python program to search an element in row-wise
# and column-wise sorted matrix
def matSearch(mat, x):
n = len(mat)
m = len(mat[0])
i = 0
j = m - 1
while i < n and j >= 0:
# If x > mat[i][j], then x will be greater
# than all elements to the left of
# mat[i][j] in row i, so increment i
if x > mat[i][j]:
i += 1
# If x < mat[i][j], then x will be smaller
# than all elements to the bottom of
# mat[i][j] in column j, so decrement j
elif x < mat[i][j]:
j -= 1
# If x = mat[i][j], return true
else:
return True
# If x was not found, return false
return False
if __name__ == "__main__":
mat = [
[3, 30, 38],
[20, 52, 54],
[35, 60, 69]
]
x = 35
if matSearch(mat, x):
print("true")
else:
print("false")
C#
// C# program to search an element in row-wise
// and column-wise sorted matrix
using System;
class GfG {
static bool matSearch(int[][] mat, int x) {
int n = mat.Length, m = mat[0].Length;
int i = 0, j = m - 1;
while (i < n && j >= 0) {
// If x > mat[i][j], then x will be greater
// than all elements to the left of
// mat[i][j] in row i, so increment i
if (x > mat[i][j]) {
i++;
}
// If x < mat[i][j], then x will be smaller
// than all elements to the bottom of
// mat[i][j] in column j, so decrement j
else if (x < mat[i][j]) {
j--;
}
// If x = mat[i][j], return true
else {
return true;
}
}
// If x was not found, return false
return false;
}
static void Main() {
int[][] mat = new int[][] {
new int[] {3, 30, 38},
new int[] {20, 52, 54},
new int[] {35, 60, 69}
};
int x = 35;
if (matSearch(mat, x))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
// JavaScript program to search an element in row-wise
// and column-wise sorted matrix
function matSearch(mat, x) {
let n = mat.length, m = mat[0].length;
let i = 0, j = m - 1;
while (i < n && j >= 0) {
// If x > mat[i][j], then x will be greater
// than all elements to the left of
// mat[i][j] in row i, so increment i
if (x > mat[i][j]) {
i++;
}
// If x < mat[i][j], then x will be smaller
// than all elements to the bottom of
// mat[i][j] in column j, so decrement j
else if (x < mat[i][j]) {
j--;
}
// If x = mat[i][j], return true
else {
return true;
}
}
// If x was not found, return false
return false;
}
// Driver Code
let mat = [
[3, 30, 38],
[20, 52, 54],
[35, 60, 69]
];
let x = 35;
if (matSearch(mat, x))
console.log("true");
else
console.log("false");
Related Article: Search element in a sorted matrix
Similar Reads
Linear Search Algorithm Given an array, arr of n integers, and an integer element x, find whether element x is present in the array. Return the index of the first occurrence of x in the array, or -1 if it doesn't exist.Input: arr[] = [1, 2, 3, 4], x = 3Output: 2Explanation: There is one test case with array as [1, 2, 3 4]
9 min read
What is Linear Search? Linear search is defined as the searching algorithm where the list or data set is traversed from one end to find the desired value. Linear search method Linear search works by sequentially checking each element in the list until the desired value is found or the end of the list is reached. Propertie
3 min read
Linear Search in different languages
C Program for Linear SearchLinear Search is a sequential searching algorithm in C that is used to find an element in a list. Linear Search compares each element of the list with the key till the element is found or we reach the end of the list.ExampleInput: arr = {10, 50, 30, 70, 80, 60, 20, 90, 40}, key: 30Output: Key Found
4 min read
C++ Program For Linear SearchLinear search algorithm is the simplest searching algorithm that is used to find an element in the given collection. It simply compares the element to find with each element in the collection one by one till the matching element is found or there are no elements left to compare.In this article, we w
4 min read
Java Program for Linear SearchLinear Search is the simplest searching algorithm that checks each element sequentially until a match is found. It is good for unsorted arrays and small datasets.Given an array a[] of n elements, write a function to search for a given element x in a[] and return the index of the element where it is
2 min read
Linear Search - PythonGiven an array, arr of n elements, and an element x, find whether element x is present in the array. Return the index of the first occurrence of x in the array, or -1 if it doesnât exist.Examples:Input: arr[] = [10, 50, 30, 70, 80, 20, 90, 40], x = 30Output : 2Explanation: For array [10, 50, 30, 70,
4 min read
8085 program for Linear search | Set 2Problem - Write an assembly language program in 8085 microprocessor to find a given number in the list of 10 numbers, if found store 1 in output else store 0 in output. Example - Assumption - Data to be found at 2040H, list of numbers from 2050H to 2059H and output at 2060H. Algorithm - Load data by
2 min read
Recursive Linear Search Algorithm Linear Search is defined as a sequential search algorithm that starts at one end and goes through each element of a list until the desired element is found, otherwise the search continues till the end of the data set.How Linear Search Works?Linear search works by comparing each element of the data s
6 min read
Sentinel Linear Search Sentinel Linear Search as the name suggests is a type of Linear Search where the number of comparisons is reduced as compared to a traditional linear search. In a traditional linear search, only N comparisons are made, and in a Sentinel Linear Search, the sentinel value is used to avoid any out-of-b
7 min read
Is Sentinel Linear Search better than normal Linear Search? Sentinel Linear search is a type of linear search where the element to be searched is placed in the last position and then all the indices are checked for the presence of the element without checking for the index out of bound case.The number of comparisons is reduced in this search as compared to a
8 min read
Improving Linear Search Technique A linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. It is observed that when searching for a key element, then there is a possibility for searching the same
15+ min read
Linear search using Multi-threading Given a large file of integers, search for a particular element in it using multi-threading. Examples:Input : 1, 5, 7, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 64, 110, 220Output :if key = 20Key element foundInput :1, 5, 7, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 64, 110, 220Output :if key = 202Key n
5 min read
Visualization of Linear Search
Some Problems on Linear Search
Number of comparisons in each direction for m queries in linear searchGiven an array containing N distinct elements. There are M queries, each containing an integer X and asking for the index of X in the array. For each query, the task is to perform linear search X from left to right and count the number of comparisons it took to find X and do the same thing right to
7 min read
Search an element in an unsorted array using minimum number of comparisonsGiven an array of n distinct integers and an element x. Search the element x in the array using minimum number of comparisons. Any sort of comparison will contribute 1 to the count of comparisons. For example, the condition used to terminate a loop, will also contribute 1 to the count of comparisons
7 min read
Search in a row wise and column wise sorted matrixGiven a matrix mat[][] and an integer x, the task is to check if x is present in mat[][] or not. Every row and column of the matrix is sorted in increasing order.Examples: Input: x = 62, mat[][] = [[3, 30, 38], [20, 52, 54], [35, 60, 69]]Output: falseExplanation: 62 is not present in the matrix.Inpu
14 min read