Efficiently compute sums of diagonals of a matrix
Last Updated :
27 Sep, 2022
Given a 2D square matrix, find the sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33
The primary diagonal is formed by the elements A00, A11, A22, A33.
- Condition for Principal Diagonal: The row-column condition is row = column.
The secondary diagonal is formed by the elements A03, A12, A21, A30. - Condition for Secondary Diagonal: The row-column condition is row = numberOfRows - column -1.
Examples :
Input :
4
1 2 3 4
4 3 2 1
7 8 9 6
6 5 4 3
Output :
Principal Diagonal: 16
Secondary Diagonal: 20
Input :
3
1 1 1
1 1 1
1 1 1
Output :
Principal Diagonal: 3
Secondary Diagonal: 3
Method 1: In this method, we use two loops i.e. a loop for columns and a loop for rows and in the inner loop we check for the condition stated above:
Implementation:
C
// A simple C program to
// find sum of diagonals
#include <stdio.h>
const int M = 4;
const int N = 4;
void printDiagonalSums(int mat[M][N])
{
int principal = 0, secondary = 0;
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
// Condition for principal diagonal
if (i == j)
principal += mat[i][j];
// Condition for secondary diagonal
if ((i + j) == (N - 1))
secondary += mat[i][j];
}
}
printf("%s", "Principal Diagonal:");
printf("%d\n", principal);
printf("%s", "Secondary Diagonal:");
printf("%d\n", secondary);
}
// Driver code
int main()
{
int a[][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{1, 2, 3, 4},
{5, 6, 7, 8}};
printDiagonalSums(a);
return 0;
}
C++
// A simple C++ program to find sum of diagonals
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
void printDiagonalSums(int mat[][MAX], int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// Condition for principal diagonal
if (i == j)
principal += mat[i][j];
// Condition for secondary diagonal
if ((i + j) == (n - 1))
secondary += mat[i][j];
}
}
cout << "Principal Diagonal:" << principal << endl;
cout << "Secondary Diagonal:" << secondary << endl;
}
// Driver code
int main()
{
int a[][MAX] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 },
{ 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
return 0;
}
Java
// A simple java program to find
// sum of diagonals
import java.io.*;
public class GFG {
static void printDiagonalSums(int [][]mat,
int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// Condition for principal
// diagonal
if (i == j)
principal += mat[i][j];
// Condition for secondary
// diagonal
if ((i + j) == (n - 1))
secondary += mat[i][j];
}
}
System.out.println("Principal Diagonal:"
+ principal);
System.out.println("Secondary Diagonal:"
+ secondary);
}
// Driver code
static public void main (String[] args)
{
int [][]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
// This code is contributed by vt_m.
Python3
# A simple Python program to
# find sum of diagonals
MAX = 100
def printDiagonalSums(mat, n):
principal = 0
secondary = 0;
for i in range(0, n):
for j in range(0, n):
# Condition for principal diagonal
if (i == j):
principal += mat[i][j]
# Condition for secondary diagonal
if ((i + j) == (n - 1)):
secondary += mat[i][j]
print("Principal Diagonal:", principal)
print("Secondary Diagonal:", secondary)
# Driver code
a = [[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ],
[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ]]
printDiagonalSums(a, 4)
# This code is contributed
# by ihritik
C#
// A simple C# program to find sum
// of diagonals
using System;
public class GFG {
static void printDiagonalSums(int [,]mat,
int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// Condition for principal
// diagonal
if (i == j)
principal += mat[i,j];
// Condition for secondary
// diagonal
if ((i + j) == (n - 1))
secondary += mat[i,j];
}
}
Console.WriteLine("Principal Diagonal:"
+ principal);
Console.WriteLine("Secondary Diagonal:"
+ secondary);
}
// Driver code
static public void Main ()
{
int [,]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
// This code is contributed by vt_m.
PHP
<?php
// A simple PHP program to
// find sum of diagonals
$MAX = 100;
function printDiagonalSums($mat, $n)
{
global $MAX;
$principal = 0;
$secondary = 0;
for ($i = 0; $i < $n; $i++)
{
for ($j = 0; $j < $n; $j++)
{
// Condition for
// principal diagonal
if ($i == $j)
$principal += $mat[$i][$j];
// Condition for
// secondary diagonal
if (($i + $j) == ($n - 1))
$secondary += $mat[$i][$j];
}
}
echo "Principal Diagonal:" ,
$principal ,"\n";
echo "Secondary Diagonal:",
$secondary ,"\n";
}
// Driver code
$a = array (array ( 1, 2, 3, 4 ),
array ( 5, 6, 7, 8 ),
array ( 1, 2, 3, 4 ),
array ( 5, 6, 7, 8 ));
printDiagonalSums($a, 4);
// This code is contributed by ajit
?>
JavaScript
<script>
// A simple Javascript program to find sum of diagonals
const MAX = 100;
void printDiagonalSums(mat, n)
{
let principal = 0, secondary = 0;
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
// Condition for principal diagonal
if (i == j)
principal += mat[i][j];
// Condition for secondary diagonal
if ((i + j) == (n - 1))
secondary += mat[i][j];
}
}
document.write("Principal Diagonal:" + principal + "<br>");
document.write("Secondary Diagonal:" + secondary + "<br>");
}
// Driver code
let a = [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ],
[ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ];
printDiagonalSums(a, 4);
// This code is contributed by subhammahato348.
</script>
OutputPrincipal Diagonal:18
Secondary Diagonal:18
Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.
Auxiliary Space: O(1), as we are not using any extra space.
Method 2( Efficient Approach): In this method, we use one loop i.e. a loop for calculating the sum of both the principal and secondary diagonals:
Implementation:
C
// An efficient C program to find
// sum of diagonals
#include <stdio.h>
#include <stdlib.h>
const int M = 4;
const int N = 4;
void printDiagonalSums(int mat[M][N])
{
int principal = 0, secondary = 0;
for (int i = 0; i < N; i++)
{
principal += mat[i][i];
secondary += mat[i][N - i - 1];
}
printf("%s","Principal Diagonal:");
printf("%d\n", principal);
printf("%s", "Secondary Diagonal:");
printf("%d\n", secondary);
}
// Driver code
int main()
{
int a[4][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{1, 2, 3, 4},
{5, 6, 7, 8}};
printDiagonalSums(a);
return 0;
}
C++
// An efficient C++ program to find sum of diagonals
#include <bits/stdc++.h>
using namespace std;
const int MAX = 100;
void printDiagonalSums(int mat[][MAX], int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1];
}
cout << "Principal Diagonal:" << principal << endl;
cout << "Secondary Diagonal:" << secondary << endl;
}
// Driver code
int main()
{
int a[][MAX] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 },
{ 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
return 0;
}
Java
// An efficient java program to find
// sum of diagonals
import java.io.*;
public class GFG {
static void printDiagonalSums(int [][]mat,
int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1];
}
System.out.println("Principal Diagonal:"
+ principal);
System.out.println("Secondary Diagonal:"
+ secondary);
}
// Driver code
static public void main (String[] args)
{
int [][]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
// This code is contributed by vt_m.
Python3
# A simple Python3 program to find
# sum of diagonals
MAX = 100
def printDiagonalSums(mat, n):
principal = 0
secondary = 0
for i in range(0, n):
principal += mat[i][i]
secondary += mat[i][n - i - 1]
print("Principal Diagonal:", principal)
print("Secondary Diagonal:", secondary)
# Driver code
a = [[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ],
[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ]]
printDiagonalSums(a, 4)
# This code is contributed
# by ihritik
C#
// An efficient C#program to find
// sum of diagonals
using System;
public class GFG {
static void printDiagonalSums(int [,]mat,
int n)
{
int principal = 0, secondary = 0;
for (int i = 0; i < n; i++) {
principal += mat[i,i];
secondary += mat[i,n - i - 1];
}
Console.WriteLine("Principal Diagonal:"
+ principal);
Console.WriteLine("Secondary Diagonal:"
+ secondary);
}
// Driver code
static public void Main ()
{
int [,]a = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 } };
printDiagonalSums(a, 4);
}
}
// This code is contributed by vt_m.
PHP
<?php
// An efficient PHP program
// to find sum of diagonals
$MAX = 100;
function printDiagonalSums($mat, $n)
{
global $MAX;
$principal = 0; $secondary = 0;
for ($i = 0; $i < $n; $i++)
{
$principal += $mat[$i][$i];
$secondary += $mat[$i][$n - $i - 1];
}
echo "Principal Diagonal:" ,
$principal ,"\n";
echo "Secondary Diagonal:" ,
$secondary ,"\n";
}
// Driver Code
$a = array(array(1, 2, 3, 4),
array(5, 6, 7, 8),
array(1, 2, 3, 4),
array(5, 6, 7, 8));
printDiagonalSums($a, 4);
// This code is contributed by aj_36
?>
JavaScript
<script>
// An efficient Javascript program to find
// sum of diagonals
function printDiagonalSums(mat,n)
{
let principal = 0, secondary = 0;
for (let i = 0; i < n; i++) {
principal += mat[i][i];
secondary += mat[i][n - i - 1];
}
document.write("Principal Diagonal:"
+ principal+"<br>");
document.write("Secondary Diagonal:"
+ secondary);
}
// Driver code
let a = [[ 1, 2, 3, 4 ],
[5, 6, 7, 8 ],
[ 1, 2, 3, 4 ],
[ 5, 6, 7, 8 ]];
printDiagonalSums(a, 4);
// This code is contributed Bobby
</script>
OutputPrincipal Diagonal:18
Secondary Diagonal:18
Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
Similar Reads
Javascript Program to Efficiently compute sums of diagonals of a matrix Given a 2D square matrix, find the sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.A00 A01 A02 A03A10 A11 A12 A13A20 A21 A22 A23A30 A31 A32 A33The primary diagonal is formed by the elements A00, A11, A22, A33. Condition for Principal Diago
3 min read
Center element of matrix equals sums of half diagonals Given a matrix of odd order i.e(5*5). Task is to check if the center element of the matrix is equal to the individual sum of all the half diagonals. Examples: Input : mat[][] = { 2 9 1 4 -2 6 7 2 11 4 4 2 9 2 4 1 9 2 4 4 0 2 4 2 5 } Output : Yes Explanation : Sum of Half Diagonal 1 = 2 + 7 = 9 Sum o
7 min read
Squares of Matrix Diagonal Elements Given an integer matrix mat[][] of odd dimensions, the task is to find the square of the elements of the Primary and Secondary diagonals.The Primary and Secondary diagonal matrix explanation is given below:Primary Diagonal Elements of a Matrix: The Primary Diagonal Elements are the ones that occur f
11 min read
Construct a matrix with sum equal to the sum of diagonal elements Given an integer N, the task is to construct a matrix of size N2 using positive and negative integers and excluding 0, such that the sum of the matrix is equal to the sum of the diagonal of the matrix. Examples: Input: N = 2 Output: 1 -2 2 4 Explanation: Diagonal sum = (1 + 4) = 5 Matrix sum = (1 -
4 min read
Sum of all parts of a square Matrix divided by its diagonals Given a 2D matrix arr[][] of N*N dimensions, the task is to find the sum of elements of all four parts of the matrix divided by the diagonals without including the diagonal elements in any of the four parts.Example: Input: arr[][] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} } Output: 2 4 6 8 Explanation: (1
9 min read
Find the maximum sum of diagonals for each cell of the Matrix Given a matrix arr[][] of size N * M, the task is to find the maximum sum of diagonals for each cell of the matrix including that particular element also. Examples: Input: N = 4, M = 41 2 2 12 4 2 42 2 3 12 4 2 4Output: 20Explanation: For this example the maximum sum can be achieved by considering s
15+ min read