Engineering Mathematics - Well Formed Formulas (WFF) Last Updated : 21 Jun, 2024 Summarize Comments Improve Suggest changes Share Like Article Like Report Well-Formed Formula(WFF) is an expression consisting of variables(capital letters), parentheses, and connective symbols. An expression is basically a combination of operands & operators and here operands and operators are the connective symbols. Below are the possible Connective Symbols: ¬ (Negation)∧ (Conjunction)∨ (Disjunction)⇒ (Rightwards Arrow)⇔ (Left-Right Arrow)Statement Formulas1. Statements that do not contain any connectives are called Atomic or Simple statements and these statements in themselves are WFFs. For example, P, Q, R, etc.2. Statements that contain one or more primary statements are called Molecular or Composite statements. For example, If P and Q are two simple statements, then some of the Composite statements which follow WFF standards can be formed are: -> ¬P -> ¬Q -> (P ∨ Q) -> (P ∧ Q) -> (¬P ∨ Q) -> ((P ∨ Q) ∧ Q) -> (P ⇒ Q) -> (P ⇔ Q) -> ¬(P ∨ Q) -> ¬(¬P ∨ ¬Q) Rules of the Well-Formed FormulasA Statement variable standing alone is a Well-Formed Formula(WFF). For example- Statements like P, ∼P, Q, ∼Q are themselves Well Formed Formulas.If 'P' is a WFF then ∼P is a formula as well.If P & Q are WFFs, then (P∨Q), (P∧Q), (P⇒Q), (P⇔Q), etc. are also WFFs.Example Of Well Formed Formulas:WFF Explanation ¬¬PBy Rule 1 each Statement by itself is a WFF, ¬P is a WFF, and let ¬P = Q. So ¬Q will also be a WFF. ((P⇒Q)⇒Q)By Rule 3 joining '(P⇒Q)' and 'Q' with connective symbol '⇒'.(¬Q ∧ P)By Rule 3 joining '¬Q' and 'P' with connective symbol '∧'.((¬P∨Q) ∧ ¬¬Q)By Rule 3 joining '(¬P∨Q)' and '¬¬Q' with connective symbol '∧'.¬((¬P∨Q) ∧ ¬¬Q)By Rule 3 joining '(¬P∨Q)' and '¬¬Q' with connective symbol '∧' and then using Rule 2.Below are the Examples which may seem like a WFF but they are not considered as Well-Formed Formulas:(P), 'P' itself alone is considered as a WFF by Rule 1 but placing that inside parenthesis is not considered as a WFF by any rule.¬P ∧ Q, this can be either (¬P∧Q) or ¬(P∧Q) so we have ambiguity in this statement and hence it will not be considered as a WFF. Parentheses are mandatory to be included in Composite Statements.((P ⇒ Q)), We can say (P⇒Q) is a WFF and let (P⇒Q) = A, now considering the outer parentheses, we will be left with (A), which is not a valid WFF. Parentheses play a really important role in these types of questions.(P ⇒⇒ Q), connective symbol right after a connective symbol is not considered to be valid for a WFF.((P ∧ Q) ∧)Q), conjunction operator after (P∧Q) is not valid.((P ∧ Q) ∧ PQ), invalid placement of variables(PQ).(P ∨ Q) ⇒ (∧ Q), with the Conjunction component, only one variable 'Q' is present. In order to form an operation inside a parentheses minimum of 2 variables are required. Comment More infoAdvertise with us Next Article Engineering Mathematics - GATE CSE Previous Year Questions S sjasandeep7 Follow Improve Article Tags : Computer Subject Engineering Mathematics Similar Reads Engineering Mathematics - GATE CSE Previous Year Questions Solving GATE Previous Year's Questions (PYQs) not only clears the concepts but also helps to gain flexibility, speed, accuracy, and understanding of the level of questions generally asked in the GATE exam, and that eventually helps you to gain good marks in the examination. Previous Year Questions h 4 min read Real Life Application of Math in Mechanical Engineering Mathematics is an essential concept of mechanical engineering, providing the essential tools for analysis, design, and optimization. Engineers use mathematical principles to understand and predict how mechanical systems behave under various conditions. From calculating stresses and strains in struct 4 min read Algebra Formulas - List of all Algebra Formulas Algebra formulas are mathematical expressions that help solve problems involving variables and constants. They often represent relationships between quantities and can be used to simplify calculations. This article provides a comprehensive overview of all algebra formulas taught from Class 9 through 10 min read Algebra Formulas - List of all Algebra Formulas Algebra formulas are mathematical expressions that help solve problems involving variables and constants. They often represent relationships between quantities and can be used to simplify calculations. This article provides a comprehensive overview of all algebra formulas taught from Class 9 through 10 min read Introduction to Mathematical Logic Mathematical logic deals with the logic in mathematics. Mathematical logic operators and laws define various statements in their mathematical form. In this article, we will explore mathematical logic along with the mathematical logic operators and types of mathematical logic. We will also solve some 5 min read PDNF and PCNF in Discrete Mathematics PDNF (Principal Disjunctive Normal Form)It stands for Principal Disjunctive Normal Form. It refers to the Sum of Products, i.e., SOP. For eg. : If P, Q, and R are the variables then (P. Q'. R) + (P' . Q . R) + (P . Q . R') is an example of an expression in PDNF. Here '+' i.e. sum is the main operato 4 min read Like