Given a Binary Search Tree, find the median of it.
- If number of nodes are even: then median = ((n/2th node + ((n)/2th+1) node) /2
- If number of nodes are odd: then median = (n+1)/2th node.
Examples:
Input:
Example of BST
Output: median of Below BST is 6.
Explanation: Inorder of Given BST will be
1, 3, 4, 6, 7, 8, 9 So, here median will 6.
Given BST:

Output: median of Below BST is 12
Median Of BST using Morris Inorder Traversal:
The idea is based on K’th smallest element in BST using O(1) Extra Space.
The task is very simple if we are allowed to use extra space but Inorder to traversal using recursion and stack both use Space which is not allowed here. So, the solution is to do Morris Inorder traversal as it doesn't require extra space.
Follow the steps mentioned below to implement the idea:
- Count the number of nodes in the given BST using Morris Inorder Traversal.
- Then perform Morris Inorder traversal one more time by counting nodes and by checking if the count is equal to the median point.
- To consider even no. of nodes, an extra pointer pointing to the previous node is used.
Below is the implementation of the above approach:
C++
/* C++ program to find the median of BST in O(n)
time and O(1) space*/
#include<bits/stdc++.h>
using namespace std;
/* A binary search tree Node has data, pointer
to left child and a pointer to right child */
struct Node
{
int data;
struct Node* left, *right;
};
// A utility function to create a new BST node
struct Node *newNode(int item)
{
struct Node *temp = new Node;
temp->data = item;
temp->left = temp->right = NULL;
return temp;
}
/* A utility function to insert a new node with
given key in BST */
struct Node* insert(struct Node* node, int key)
{
/* If the tree is empty, return a new node */
if (node == NULL) return newNode(key);
/* Otherwise, recur down the tree */
if (key < node->data)
node->left = insert(node->left, key);
else if (key > node->data)
node->right = insert(node->right, key);
/* return the (unchanged) node pointer */
return node;
}
/* Function to count nodes in a binary search tree
using Morris Inorder traversal*/
int counNodes(struct Node *root)
{
struct Node *current, *pre;
// Initialise count of nodes as 0
int count = 0;
if (root == NULL)
return count;
current = root;
while (current != NULL)
{
if (current->left == NULL)
{
// Count node if its left is NULL
count++;
// Move to its right
current = current->right;
}
else
{
/* Find the inorder predecessor of current */
pre = current->left;
while (pre->right != NULL &&
pre->right != current)
pre = pre->right;
/* Make current as right child of its
inorder predecessor */
if(pre->right == NULL)
{
pre->right = current;
current = current->left;
}
/* Revert the changes made in if part to
restore the original tree i.e., fix
the right child of predecessor */
else
{
pre->right = NULL;
// Increment count if the current
// node is to be visited
count++;
current = current->right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return count;
}
/* Function to find median in O(n) time and O(1) space
using Morris Inorder traversal*/
int findMedian(struct Node *root)
{
if (root == NULL)
return 0;
int count = counNodes(root);
int currCount = 0;
struct Node *current = root, *pre, *prev;
while (current != NULL)
{
if (current->left == NULL)
{
// count current node
currCount++;
// check if current node is the median
// Odd case
if (count % 2 != 0 && currCount == (count+1)/2)
return current->data;
// Even case
else if (count % 2 == 0 && currCount == (count/2)+1)
return (prev->data + current->data)/2;
// Update prev for even no. of nodes
prev = current;
//Move to the right
current = current->right;
}
else
{
/* Find the inorder predecessor of current */
pre = current->left;
while (pre->right != NULL && pre->right != current)
pre = pre->right;
/* Make current as right child of its inorder predecessor */
if (pre->right == NULL)
{
pre->right = current;
current = current->left;
}
/* Revert the changes made in if part to restore the original
tree i.e., fix the right child of predecessor */
else
{
pre->right = NULL;
prev = pre;
// Count current node
currCount++;
// Check if the current node is the median
if (count % 2 != 0 && currCount == (count+1)/2 )
return current->data;
else if (count%2==0 && currCount == (count/2)+1)
return (prev->data+current->data)/2;
// update prev node for the case of even
// no. of nodes
prev = current;
current = current->right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
}
/* Driver program to test above functions*/
int main()
{
/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
struct Node *root = NULL;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
cout << "\nMedian of BST is "
<< findMedian(root);
return 0;
}
Java
/* Java program to find the median of BST in O(n)
time and O(1) space*/
class GfG {
/* A binary search tree Node has data, pointer
to left child and a pointer to right child */
static class Node
{
int data;
Node left, right;
}
// A utility function to create a new BST node
static Node newNode(int item)
{
Node temp = new Node();
temp.data = item;
temp.left = null;
temp.right = null;
return temp;
}
/* A utility function to insert a new node with
given key in BST */
static Node insert(Node node, int key)
{
/* If the tree is empty, return a new node */
if (node == null) return newNode(key);
/* Otherwise, recur down the tree */
if (key < node.data)
node.left = insert(node.left, key);
else if (key > node.data)
node.right = insert(node.right, key);
/* return the (unchanged) node pointer */
return node;
}
/* Function to count nodes in a binary search tree
using Morris Inorder traversal*/
static int counNodes(Node root)
{
Node current, pre;
// Initialise count of nodes as 0
int count = 0;
if (root == null)
return count;
current = root;
while (current != null)
{
if (current.left == null)
{
// Count node if its left is NULL
count++;
// Move to its right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null &&
pre.right != current)
pre = pre.right;
/* Make current as right child of its
inorder predecessor */
if(pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to
restore the original tree i.e., fix
the right child of predecessor */
else
{
pre.right = null;
// Increment count if the current
// node is to be visited
count++;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return count;
}
/* Function to find median in O(n) time and O(1) space
using Morris Inorder traversal*/
static int findMedian(Node root)
{
if (root == null)
return 0;
int count = counNodes(root);
int currCount = 0;
Node current = root, pre = null, prev = null;
while (current != null)
{
if (current.left == null)
{
// count current node
currCount++;
// check if current node is the median
// Odd case
if (count % 2 != 0 && currCount == (count+1)/2)
return current.data;
// Even case
else if (count % 2 == 0 && currCount == (count/2)+1)
return (prev.data + current.data)/2;
// Update prev for even no. of nodes
prev = current;
//Move to the right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null && pre.right != current)
pre = pre.right;
/* Make current as right child of its inorder predecessor */
if (pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to restore the original
tree i.e., fix the right child of predecessor */
else
{
pre.right = null;
prev = pre;
// Count current node
currCount++;
// Check if the current node is the median
if (count % 2 != 0 && currCount == (count+1)/2 )
return current.data;
else if (count%2==0 && currCount == (count/2)+1)
return (prev.data+current.data)/2;
// update prev node for the case of even
// no. of nodes
prev = current;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return -1;
}
/* Driver code*/
public static void main(String[] args)
{
/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
Node root = null;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
System.out.println("Median of BST is " + findMedian(root));
}
}
// This code is contributed by prerna saini.
Python3
# Python program to find closest
# value in Binary search Tree
_MIN=-2147483648
_MAX=2147483648
# Helper function that allocates
# a new node with the given data
# and None left and right pointers.
class newNode:
# Constructor to create a new node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
""" A utility function to insert a new node with
given key in BST """
def insert(node,key):
""" If the tree is empty, return a new node """
if (node == None):
return newNode(key)
""" Otherwise, recur down the tree """
if (key < node.data):
node.left = insert(node.left, key)
elif (key > node.data):
node.right = insert(node.right, key)
""" return the (unchanged) node pointer """
return node
""" Function to count nodes in
a binary search tree using
Morris Inorder traversal"""
def counNodes(root):
# Initialise count of nodes as 0
count = 0
if (root == None):
return count
current = root
while (current != None):
if (current.left == None):
# Count node if its left is None
count+=1
# Move to its right
current = current.right
else:
""" Find the inorder predecessor of current """
pre = current.left
while (pre.right != None and
pre.right != current):
pre = pre.right
""" Make current as right child of its
inorder predecessor """
if(pre.right == None):
pre.right = current
current = current.left
else:
pre.right = None
# Increment count if the current
# node is to be visited
count += 1
current = current.right
return count
""" Function to find median in
O(n) time and O(1) space
using Morris Inorder traversal"""
def findMedian(root):
if (root == None):
return 0
count = counNodes(root)
currCount = 0
current = root
while (current != None):
if (current.left == None):
# count current node
currCount += 1
# check if current node is the median
# Odd case
if (count % 2 != 0 and
currCount == (count + 1)//2):
return current.data
# Even case
elif (count % 2 == 0 and
currCount == (count//2)+1):
return (prev.data + current.data)//2
# Update prev for even no. of nodes
prev = current
#Move to the right
current = current.right
else:
""" Find the inorder predecessor of current """
pre = current.left
while (pre.right != None and
pre.right != current):
pre = pre.right
""" Make current as right child
of its inorder predecessor """
if (pre.right == None):
pre.right = current
current = current.left
else:
pre.right = None
prev = pre
# Count current node
currCount+= 1
# Check if the current node is the median
if (count % 2 != 0 and
currCount == (count + 1) // 2 ):
return current.data
elif (count%2 == 0 and
currCount == (count // 2) + 1):
return (prev.data+current.data)//2
# update prev node for the case of even
# no. of nodes
prev = current
current = current.right
# Driver Code
if __name__ == '__main__':
""" Constructed binary tree is
50
/ \
30 70
/ \ / \
20 40 60 80 """
root = newNode(50)
insert(root, 30)
insert(root, 20)
insert(root, 40)
insert(root, 70)
insert(root, 60)
insert(root, 80)
print("Median of BST is ",findMedian(root))
# This code is contributed
# Shubham Singh(SHUBHAMSINGH10)
C#
/* C# program to find the median of BST in O(n)
time and O(1) space*/
using System;
class GfG
{
/* A binary search tree Node has data, pointer
to left child and a pointer to right child */
public class Node
{
public int data;
public Node left, right;
}
// A utility function to create a new BST node
static Node newNode(int item)
{
Node temp = new Node();
temp.data = item;
temp.left = null;
temp.right = null;
return temp;
}
/* A utility function to insert a new node with
given key in BST */
static Node insert(Node node, int key)
{
/* If the tree is empty, return a new node */
if (node == null) return newNode(key);
/* Otherwise, recur down the tree */
if (key < node.data)
node.left = insert(node.left, key);
else if (key > node.data)
node.right = insert(node.right, key);
/* return the (unchanged) node pointer */
return node;
}
/* Function to count nodes in a binary search tree
using Morris Inorder traversal*/
static int counNodes(Node root)
{
Node current, pre;
// Initialise count of nodes as 0
int count = 0;
if (root == null)
return count;
current = root;
while (current != null)
{
if (current.left == null)
{
// Count node if its left is NULL
count++;
// Move to its right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null &&
pre.right != current)
pre = pre.right;
/* Make current as right child of its
inorder predecessor */
if(pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to
restore the original tree i.e., fix
the right child of predecessor */
else
{
pre.right = null;
// Increment count if the current
// node is to be visited
count++;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return count;
}
/* Function to find median in O(n) time and O(1) space
using Morris Inorder traversal*/
static int findMedian(Node root)
{
if (root == null)
return 0;
int count = counNodes(root);
int currCount = 0;
Node current = root, pre = null, prev = null;
while (current != null)
{
if (current.left == null)
{
// count current node
currCount++;
// check if current node is the median
// Odd case
if (count % 2 != 0 && currCount == (count+1)/2)
return current.data;
// Even case
else if (count % 2 == 0 && currCount == (count/2)+1)
return (prev.data + current.data)/2;
// Update prev for even no. of nodes
prev = current;
//Move to the right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null && pre.right != current)
pre = pre.right;
/* Make current as right child of its inorder predecessor */
if (pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to restore the original
tree i.e., fix the right child of predecessor */
else
{
pre.right = null;
prev = pre;
// Count current node
currCount++;
// Check if the current node is the median
if (count % 2 != 0 && currCount == (count+1)/2 )
return current.data;
else if (count % 2 == 0 && currCount == (count/2)+1)
return (prev.data + current.data)/2;
// update prev node for the case of even
// no. of nodes
prev = current;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return -1;
}
/* Driver code*/
public static void Main(String []args)
{
/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
Node root = null;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
Console.WriteLine("Median of BST is " + findMedian(root));
}
}
// This code is contributed by Arnab Kundu
JavaScript
<script>
/* JavaScript program to find
the median of BST in O(n)
time and O(1) space*/
/* A binary search tree Node has data, pointer
to left child and a pointer to right child */
class Node {
constructor() {
this.data = 0;
this.left = null;
this.right = null;
}
}
// A utility function to create a new BST node
function newNode(item)
{
var temp = new Node();
temp.data = item;
temp.left = null;
temp.right = null;
return temp;
}
/* A utility function to insert a new node with
given key in BST */
function insert(node , key)
{
/* If the tree is empty, return a new node */
if (node == null) return newNode(key);
/* Otherwise, recur down the tree */
if (key < node.data)
node.left = insert(node.left, key);
else if (key > node.data)
node.right = insert(node.right, key);
/* return the (unchanged) node pointer */
return node;
}
/* Function to count nodes in a binary search tree
using Morris Inorder traversal*/
function counNodes(root)
{
var current, pre;
// Initialise count of nodes as 0
var count = 0;
if (root == null)
return count;
current = root;
while (current != null)
{
if (current.left == null)
{
// Count node if its left is NULL
count++;
// Move to its right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null &&
pre.right != current)
pre = pre.right;
/* Make current as right child of its
inorder predecessor */
if(pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to
restore the original tree i.e., fix
the right child of predecessor */
else
{
pre.right = null;
// Increment count if the current
// node is to be visited
count++;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return count;
} /* Function to find median in O(n) time and O(1) space
using Morris Inorder traversal*/
function findMedian(root)
{
if (root == null)
return 0;
var count = counNodes(root);
var currCount = 0;
var current = root, pre = null, prev = null;
while (current != null)
{
if (current.left == null)
{
// count current node
currCount++;
// check if current node is the median
// Odd case
if (count % 2 != 0 &&
currCount == (count+1)/2)
return current.data;
// Even case
else if (count % 2 == 0 &&
currCount == (count/2)+1)
return (prev.data + current.data)/2;
// Update prev for even no. of nodes
prev = current;
//Move to the right
current = current.right;
}
else
{
/* Find the inorder predecessor of current */
pre = current.left;
while (pre.right != null &&
pre.right != current)
pre = pre.right;
/* Make current as right child of its
inorder predecessor */
if (pre.right == null)
{
pre.right = current;
current = current.left;
}
/* Revert the changes made in if
part to restore the original
tree i.e., fix the right child of predecessor */
else
{
pre.right = null;
prev = pre;
// Count current node
currCount++;
// Check if the current node is the median
if (count % 2 != 0 &&
currCount == (count+1)/2 )
return current.data;
else if (count%2==0 &&
currCount == (count/2)+1)
return (prev.data+current.data)/2;
// update prev node for the case of even
// no. of nodes
prev = current;
current = current.right;
} /* End of if condition pre->right == NULL */
} /* End of if condition current->left == NULL*/
} /* End of while */
return -1;
}
/* Driver code*/
/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
var root = null;
root = insert(root, 50);
insert(root, 30);
insert(root, 20);
insert(root, 40);
insert(root, 70);
insert(root, 60);
insert(root, 80);
document.write("Median of BST is " + findMedian(root));
// This code is contributed by todaysgaurav
</script>
OutputMedian of BST is 50
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Bisection Method The bisection method is a technique for finding solutions to equations with a single unknown variable. Among various numerical methods, it stands out for its simplicity and effectiveness, particularly when dealing with transcendental equations (those that cannot be solved using algebraic methods alo
10 min read
Ceil in a BST Given a binary search tree and a key(node) value, find the ceil value for that particular key value. Please note that we have already discussed floor in BSTExample: 8 / \ 4 12 / \ / \2 6 10 14Key: 11 Ceil: 12Key: 1 Ceil: 2Key: 6 Ceil: 6Key: 15 Ceil: -1There are numerous applications where we need to
14 min read
Find Median in BST Subtree from Kth Smallest Node Given a binary search tree, the task is to find the median of the subtree rooted with Kth smallest node of the tree. Examples: Input: N = 12, K = 9 50 / \ 25 75 / \ \ 15 45 90 / \ / \ / \11 20 30 49 80 100 Output: 85Explanation: K=9. So the 9th smallest number is 75. The values of this subtree are 7
7 min read
Remove BST Keys in a given Range Given a Binary Search Tree (BST) and a range [min, max], remove all keys which are inside the given range. The modified tree should also be BST. For example, consider the following BST and range [50, 70]. 50 / \ 30 70 / \ / \ 20 40 60 80 The given BST should be transformed to this: 80 / 30 / \ 20 40
10 min read
Sorted Linked List to Balanced BST Given a Singly Linked List which has data members sorted in ascending order. Construct a Balanced Binary Search Tree which has same data members as the given Linked List. Examples: Input: Linked List 1->2->3Output: A Balanced BST 2 / \ 1 3 Input: Linked List 1->2->3->4->5->6-
15+ min read
Floor in Binary Search Tree (BST) Given a Binary Search Tree and a number x, the task is to find the floor of x in the given BST, where floor means the greatest value node of the BST which is smaller than or equal to x. if x is smaller than the smallest node of BST then return -1.Examples:Input: Output: 55Explanantion: Table of Cont
14 min read