In this Article, We will be going through the Inverse Laplace transform, We will start our Article with an introduction to the basics of the Laplace Transform, Then we will go through the Inverse Laplace Transform, will see its Basic Properties, Inverse Laplace Table for some Functions, We will also see the Difference between Laplace Transform and Inverse Laplace Transform, At last, we will conclude our Article with Some examples of inverse Laplace Transform, Applications of inverse Laplace and Some FAQs.
The Laplace Transform is a mathematical tool widely utilized in engineering, physics, and mathematics. It simplifies the analysis of complex functions by converting them from the time domain (which deals with functions of time) to the frequency or complex domain, known as the Laplace domain. This transformation facilitates solving different equations and studying system behavior, as it transforms intricate algebraic operations into more straightforward manipulations. Due to its effectiveness in modeling and analyzing dynamic systems, the Laplace Transform holds significant importance across diverse scientific and engineering fields.
The symbolic notation of Laplace Transform is given below :
L{f(t)} = F(s)
It is used for solving linear differential equations and analyzing system behavior in the frequency domain. And it is widely used in engineering, physics, control theory, and signal processing for analysis and design of linear systems.
The Inverse Laplace Transform is a mathematical operation that reverses the process of taking Laplace transforms. It converts a function from the Laplace domain, where complex numbers are used, back to the original time domain. This operation finds wide applications in engineering, physics, and mathematics for analyzing and solving linear time-invariant systems and differential equations.
By recovering a function's behavior in terms of time, the Inverse Laplace Transform provides a more intuitive and practical approach for real-world applications. It serves as a fundamental tool in understanding and solving various dynamic systems and phenomena across different scientific disciplines.
The symbolic notation of Inverse Laplace Transform is given below :
L-1{F(s) = f(t)
It is Used to find the original time-domain function from its Laplace Transform. Also used for solving differential equations and finding solutions in the time domain for systems described in Laplace domain.
Linearity Theorem
If a and b are constants, and F(s) and G(s) are the Laplace transforms of functions f(t) and g(t) respectively, then the inverse Laplace transform of aF(s) + bG(s) is given by:
L-1 {aF(s)+bG(s)}=a.L-1 {F(s)}+b.L-1 {G(s)}
To find the inverse Laplace transform of a linear combination of transformed functions, you can use this theorem. Simply take a weighted sum of their respective inverse Laplace transforms.
Shifting Theorem
If F(s) is the Laplace transform of a function f(t), then the inverse Laplace transform of e-at F(s)is given by:
L-1 {e-atF(s)} = f(t-a)
This Property illustrates how multiplying the Laplace transform by e-at in the Laplace domain corresponds to shifting the original function f(t) by a units to the right in the time domain.
Convolution Theorem
The Convolution Theorem for Laplace Transforms states that if F(s) and G(s) are the Laplace transforms of functions f(t) and g(t) respectively, then the Laplace transform of their convolution, denoted as f(t) × g(t), is equal to the product of their individual Laplace transforms. Mathematically, it can be expressed as:
L{f(t) × g(t)}=F(s)⋅G(s)
To find the Laplace transform of two functions convolved in the time domain, you can multiply their individual Laplace transforms in the s-domain.
Function in s-Domain Y(s)
| Inverse Laplace Transform y(t)
|
---|
1
| (t)
|
1/s
|
1
|
a
| u(t)
|
1/sn
| \frac{t^{n-1}}{\left(n-1\right)!}u\left(t\right)
|
eat for a>0
| u\left(t\right)\ \frac{1}{\left(s-a\right)^n}
, Here n is a positive number
|
cos(bt)
| u\left(t\right)\ \frac{s}{s^2-b^2}
|
sin(bt)
| u\left(t\right)\ \frac{b}{s^2-b^2}
|
eat cos(bt)
| u\left(t\right)\ \frac{s-a}{\left(s-a\right)^2+b^2}
|
eat sin(bt)
| u\left(t\right)\ \frac{b}{\left(s-a\right)^2+b^2}
|
1/ (s-a)
| eat u(t)
|
eat
| eat u(t)
|
Aspect
| Laplace Transform
| Inverse Laplace Transform
|
---|
Definition
| It converts a function represented in the time domain into its corresponding complex representation in the frequency domain.
| Transforms a complex function in the frequency domain back into its corresponding representation in the time domain.
|
Symbolic Notation
| L{f(t)} = F(s)
| L-1{F(s) = f(t)
|
Input
| Takes a time-domain function f(t)
| Takes a complex function F(s) in the frequency domain.
|
Output
| Produces a complex function F(s) in the frequency domain.
| Produces a time-domain function f(t)
|
Purpose
| Used for solving linear differential equations and analyzing system behavior in the frequency domain.
| Used to find the original time-domain function from its Laplace Transform.
|
Mathematical Operation
| Integral operation involving integration from 0 to ∞.
| Integral operation involving integration along a vertical line in the complex s-plane.
|
Common Transform Pairs
| Example: L\left[e^{\left(at\right)}\right]=\frac{1}{\left(s-a\right)}
| Example: L^{-1}\left\{\frac{1}{\left(s-a\right)}\right\}=e^{\left(at\right)}
|
Linearity Property
| L{af(t) + bg(t) = aF(s) + bG(s)
| L-1 {aF(s) + bG(s)} = af(t) + bg(T)
|
Practical Use
| Widely used in engineering, physics, control theory, and signal processing for analysis and design of linear systems.
| Used for solving differential equations and finding solutions in the time domain for systems described in Laplace domain.
|
The Inverse Laplace Transform is a mathematical operation used to find the original function in the time domain from its Laplace Transform in the frequency domain. It involves several properties and formulas that simplify the calculation process. These properties include:
1. Linearity Property
According to this property states that if you have two constants, Ca and Cb, and their respective Laplace Transforms Fa(s) and Fb(s) for functions fa(t) and fb(t), then the Inverse Laplace Transform of Ca Fa(s)+Cb Fb(s) is equal to Ca a times the Inverse Laplace Transform of Fa(s) plus Cb times the Inverse Laplace Transform of Fb(s). In mathematical terms, we can write as
L−1{Ca Fa(s)+Cb Fb(s)}=Ca L−1{Fa(s)}+Cb L−1{Fb(s)},
OR
Ca fa(t)+Cb fb (t)
2. Shifting Property (First Translation)
If the Laplace Transform of eat f(t) is F(s−a), then the Inverse Laplace Transform of F(s−a) is equal to eat ⋅ f(t). Similarly, if it's F(s−b), then it's ebt ⋅ f(t).
3. Second Shifting Property (Second Translation)
If L-1{F(s)}=f(t), then L-1{e(-as)F(s)} is equal to g(t), where g(t) = \left[f\frac{t-a}{a}\right]
4. Change of Scale Property
If L-1{F(s)}=f(t), then, L-1{F(as)} is equal to \frac{1}{a}f\left(\frac{t}{a}\right)
5. Property of Inverse Laplace Transform of Derivatives
If L−1{F(s)}=f(t), then the Inverse Laplace Transform of dF(s)/ds is equal to −tf(t), and the Inverse Laplace Transform of d2F(s)/ds2 is equal to (−1)2t2f(t).
6. Property of Inverse Laplace Transform of Integrals
If L−1{F(s)}=f(t), then the Inverse Laplace Transform of f^{s\ to\ 0}
F(u)d(u) is equal to f(t)/t
7. Property of Multiplication by the Powers of s
According to this property, if L−1{F(s)}=f(t)), then L-1{sF(s)-f(0)}=f(t)) , which is the derivative of f(t). If f(0)equals 0, then L-1{sF(s)} is also equal to f(t).
8. Convolution Theorem
For two functions f(t) and g(t) with Inverse Laplace Transforms f(t) and g(t) respectively, the Inverse Laplace Transform of their product F(s)G(s) is equal to the convolution of f(t) and g(t). This convolution, denoted as f(t)⋅g(t), is defined as the integral from -∞ to ∞ of f(u)g(t-u)du.
There are some list of Advantages and Disadvantages of Inverse Laplace Transform given below :
Advantages of Inverse Laplace Transform
- The Inverse Laplace Transform translates complex functions from the frequency domain into their corresponding representations in the time domain, simplifying intricate mathematical expressions..
- It is important for solving linear differential equations in physics and engineering, among other domains, particularly when initial or boundary conditions are involved.
- It facilitates the study and design of systems in control systems and signal processing by converting functions from the Laplace domain into the time domain.
- It is used by engineers to forecast and understand how dynamic systems—such as machinery, circuits, and chemical reactions—will behave over time.
- Its practical use extends to convolutional operations, which are useful for analyzing systems with complex inputs. This is particularly important for tasks such as filtering and signal processing.
Disadvantages of Inverse Laplace Transform
- Inverse Laplace Transforms use vertical line integration in the s-plane, which can be challenging and time-consuming.
- It is most effective for linear systems, as nonlinear systems may not have direct Laplace representations, making it less useful.
- Some functions may have convergence problems, especially for s-plane singularities or branch points.
- It is useful in solving initial value problems, but for problems with boundary conditions, other techniques like Fourier series may be more suitable.
- Used for analyzing and designing circuits, especially during transient events.
- Employed in designing control systems for applications like automotive and aerospace.
- Critical for tasks such as filtering, system identification, and signal reconstruction.
- Helps analyze and model dynamic mechanical systems like structural vibrations.
- Used in modeling and analyzing reactor dynamics and chemical processes in control systems.
- Utilized to model physiological systems and study biological responses to stimuli.
- Applied in modeling economic systems and understanding market dynamics, including shocks.
Example 1: Given the Laplace transform F(s) = \frac{2}{s^2+4}
, find the inverse Laplace transform.
Decompose \( F(s) \) into partial fractions:
F(s) = \frac{2}{s^2+4} = \frac{A}{s-2i} + \frac{B}{s+2i}
Solving for ( A ) and ( B ), you get ( A = i ) and ( B = -i ).
The inverse Laplace transform of \frac{1}{s-a}
is eat, so for \frac{A}{s-2i}
and \frac{B}{s+2i}
, the inverse transforms are Ae2it and Be-2it respectively.
Combine the results to get the overall inverse Laplace transform:
\mathcal{L}^{-1}\{F(s)\} = i e^{2it} - i e^{-2it}
Example 2: Given G(s) = \frac{3s+2}{s^2+2s+5}
, find the inverse Laplace transform.
Factorize the denominator and complete the square:
s2 + 2s + 5 = (s+1)2 + 4
Decompose (G(s)) into partial fractions:
G(s) = \frac{3s+2}{(s+1)^2 + 4} = \frac{3(s+1)}{(s+1)^2 + 4} + \frac{-1}{(s+1)^2 + 4}
Solve for the constants to get ( A = 3 ) and ( B = -1 ).
The inverse Laplace transform of \frac{1}{s^2+a^2}
is \frac{1}{a} \sin(at)
, so for \frac{3(s+1)}{(s+1)^2 + 4}
and \frac{-1}{(s+1)^2 + 4}
, the inverse transforms are 3e^{-t} \sin(2t)
and \frac{1}{2}e^{-t} \sin(2t)
respectively.
Combine the results to get the overall inverse Laplace transform:
\mathcal{L}^{-1}\{G(s)\} = 3e^{-t} \sin(2t) - \frac{1}{2}e^{-t} \sin(2t)
Conclusion
Inverse Laplace transforms are valuable tools used to convert complex functions from the Laplace domain to the time domain. They enable us to analyze and solve a wide range of mathematical and real-world problems in engineering, physics, and mathematics.
Similar Reads
Laplace Transform Laplace transform is an effective method for solving ordinary and partial differential equations, and it has been successful in many applications. These equations describe how certain quantities change over time, such as the current in an electrical circuit, the vibrations of a membrane, or the flow
10 min read
Laplace Transform in MATLAB In this article, we will see how to find Laplace Transform in MATLAB. Laplace Transform helps to simplify problems that involve Differential Equations into algebraic equations. As the name suggests, it transforms the time-domain function f(t) into Laplace domain function F(s). Â L [ f(t) ] = F(s) =\i
1 min read
Inverse Fourier transform in MATLAB Inverse Fourier Transform helps to return from Frequency domain function X(Ï) to Time Domain x(t). In this article, we will see how to find Inverse Fourier Transform in MATLAB. The mathematical expression for Inverse Fourier transform is:  x(t) = F^{-1}\{X(Ï)\} = 1/2Ï â«_{-â}^âX(Ï).e^{jÏt} dÏ In MATL
3 min read
2-D Inverse Cosine Transform in MATLAB The 2-D inverse cosine transform is used to decode an image into the spatial domain, which is a more suitable data representation for compression (ICT). ICT-based decoding is the foundation for standards for image and video decompression. or, to put it another way, we can say that the inverse cosine
2 min read
How to find inverse Laplace Transforms using MATLAB ? In this article, we will see how to find Laplace Transform in MATLAB. Laplace Transform helps to simplify problems that involve Differential Equations into algebraic equations. Inverse Laplace Transform converts Laplace Domain Function F(s) into time-domain function f(t) f(t) = L^{-1}[F(s)]Â Using t
2 min read
Laplace Transform in Circuit Analysis The analysis of circuit analysis is a fundamental discipline in electrical engineering. It enables engineers to design and construct electrical circuits for several purposes. The Laplace transform is one of the powerful mathematical tools that play a vital role in circuit analysis. The Laplace trans
7 min read