Open In App

Maximum number of segments of lengths a, b and c

Last Updated : 13 Jan, 2023
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given a positive integer N, find the maximum number of segments of lengths a, b and c that can be formed from N . 
Examples : 
 

Input : N = 7, a = 5, b, = 2, c = 5 
Output : 2 
N can be divided into 2 segments of lengths
2 and 5. For the second example,

Input : N = 17, a = 2, b = 1, c = 3 
Output : 17 
N can be divided into 17 segments of 1 or 8 
segments of 2 and 1 segment of 1. But 17 segments
of 1 is greater than 9 segments of 2 and 1.  


 

To understand any DP problem clearly, we need to write first of all its recursive code and then go for optimization.

Recursion-Based Solution:

Here for any value of n, we have 3 possibilities, for making the maximum segment count
if (n >= a) we can make 1 segment of length a + another possible segment from the length of n - a
if (n >= b) we can make 1 segment of length b + another possible segment from the length of n - b
if (n >= c) we can make 1 segment of length c + another possible segment from the length of n - c
so now we have to take the maximum possible segment above in 3 condition

Below is an implementation for the same.

C++
// C++ implementation to divide N into maximum
// number of segments of length a, b and c

#include <bits/stdc++.h>
using namespace std;

// Function to find the maximum number
// of segments
int maximumSegments(int n, int a, int b, int c)
{
    // Base case
    if (n == 0) {
        return 0;
    }

    int maxa = INT_MIN;
    // Conditions

    // Making one segment of length a
    if (n >= a) {
        maxa = max(maxa,
                   1 + maximumSegments(n - a, a, b, c));
    }
    // Making one segment of length b
    if (n >= b) {
        maxa = max(maxa,
                   1 + maximumSegments(n - b, a, b, c));
    }
    // Making one segment of length c
    if (n >= c) {
        maxa = max(maxa,
                   1 + maximumSegments(n - c, a, b, c));
    }

    // Return maximum out of all possible segment
    return maxa;
}

// Driver code
int main()
{
    int n = 7, a = 5, b = 2, c = 5;

    // Function call
    cout << maximumSegments(n, a, b, c);
    return 0;
}
Java
// Java implementation to divide N into 
// maximum number of segments of length a, b and c

class GFG {

  static int INT_MIN = -1000000000;

  // Function to find the maximum number of segments
  static int maximumSegments(int n, int a, int b, int c) 
  {

    // Base case
    if (n == 0) {
      return 0;
    }

    int maxa = INT_MIN;
    // Conditions

    // Making one segment of length a
    if (n >= a) {
      maxa = Math.max(maxa, 1 + maximumSegments(n - a, a, b, c));
    }
    // Making one segment of length b
    if (n >= b) {
      maxa = Math.max(maxa, 1 + maximumSegments(n - b, a, b, c));
    }
    // Making one segment of length c
    if (n >= c) {
      maxa = Math.max(maxa, 1 + maximumSegments(n - c, a, b, c));
    }

    // Return maximum out of all possible segment
    return maxa;
  }

  // Driver code
  public static void main(String[] args) {
    int n = 7, a = 5, b = 2, c = 5;

    // Function call
    System.out.println(maximumSegments(n, a, b, c));
  }
}

// This code is contributed by ajaymakvana.
Python
# Python implementation to divide N into maximum
# number of segments of length a, b and c

# Function to find the maximum number
# of segments
def maximumSegments(n, a, b, c):
    # Base case
    if n == 0:
        return 0

    maxa = float('-inf')
    # Conditions

    # Making one segment of length a
    if n >= a:
        maxa = max(maxa,
                   1 + maximumSegments(n - a, a, b, c))
    # Making one segment of length b
    if n >= b:
        maxa = max(maxa,
                   1 + maximumSegments(n - b, a, b, c))
    # Making one segment of length c
    if n >= c:
        maxa = max(maxa,
                   1 + maximumSegments(n - c, a, b, c))

    # Return maximum out of all possible segment
    return maxa

# Driver code
if __name__ == '__main__':
    n = 7
    a = 5
    b = 2
    c = 5

    # Function call
    print(maximumSegments(n, a, b, c))

 # This code is contributed by divyansh2212
C#
using System;

namespace ConsoleApp {
  class Program {
    static void Main(string[] args)
    {
      int n = 7, a = 5, b = 2, c = 5;
      Console.WriteLine(maximumSegments(n, a, b, c));
    }

    // Function to find the maximum number of segments
    static int maximumSegments(int n, int a, int b, int c)
    {
      // Base case
      if (n == 0) {
        return 0;
      }

      int maxa = int.MinValue;
      // Conditions

      // Making one segment of length a
      if (n >= a) {
        maxa = Math.Max(
          maxa, 1 + maximumSegments(n - a, a, b, c));
      }
      // Making one segment of length b
      if (n >= b) {
        maxa = Math.Max(
          maxa, 1 + maximumSegments(n - b, a, b, c));
      }
      // Making one segment of length c
      if (n >= c) {
        maxa = Math.Max(
          maxa, 1 + maximumSegments(n - c, a, b, c));
      }

      // Return maximum out of all possible segments
      return maxa;
    }
  }
}

// This code is contributed by divyansh2212
JavaScript
// Javascript implementation to divide N into maximum
// number of segments of length a, b and c

// Function to find the maximum number
// of segments
function maximumSegments(n, a, b, c) {
    // Base case
    if (n === 0) {
        return 0;
    }

    let maxa = Number.MIN_SAFE_INTEGER;

    // Making one segment of length a
    if (n >= a) {
        maxa = Math.max(maxa,
                   1 + maximumSegments(n - a, a, b, c));
    }
    // Making one segment of length b
    if (n >= b) {
        maxa = Math.max(maxa,
                   1 + maximumSegments(n - b, a, b, c));
    }
    // Making one segment of length c
    if (n >= c) {
        maxa = Math.max(maxa,
                   1 + maximumSegments(n - c, a, b, c));
    }

    // Return maximum out of all possible segment
    return maxa;
}

// Driver code
let n = 7, a = 5, b = 2, c = 5;

// Function call
console.log(maximumSegments(n, a, b, c));

// This code is contributed by poojaagarwal2.

Output
2

Time Complexity: O(3n)
Auxiliary Space : O(n)


Optimized Approach : The approach used is Dynamic Programming. The base dp0 will be 0 as initially it has no segments. After that, iterate from 1 to n, and for each of the 3 states i.e, dpi+a, dpi+b and dpi+c, store the maximum value obtained by either using or not using the a, b or c segment. 
The 3 states to deal with are : 
 

dpi+a=max(dpi+1, dpi+a); 
dpi+b=max(dpi+1, dpi+b); 
dpi+c=max(dpi+1, dpi+c);


Below is the implementation of above idea : 
 

C++
// C++ implementation to divide N into
// maximum number of segments
// of length a, b and c
#include <bits/stdc++.h>
using namespace std;

// function to find the maximum
// number of segments
int maximumSegments(int n, int a, int b, int c)
{
    // stores the maximum number of
    // segments each index can have
    int dp[n + 1];

    // initialize with -1
    memset(dp, -1, sizeof(dp));

    // 0th index will have 0 segments
    // base case
    dp[0] = 0;

    // traverse for all possible
    // segments till n
    for (int i = 0; i < n; i++) {
        if (dp[i] != -1) {

            // conditions
            if (i + a <= n) // avoid buffer overflow
                dp[i + a] = max(dp[i] + 1, dp[i + a]);

            if (i + b <= n) // avoid buffer overflow
                dp[i + b] = max(dp[i] + 1, dp[i + b]);

            if (i + c <= n) // avoid buffer overflow
                dp[i + c] = max(dp[i] + 1, dp[i + c]);
        }
    }
    return dp[n];
}

// Driver code
int main()
{
    int n = 7, a = 5, b = 2, c = 5;
    cout << maximumSegments(n, a, b, c);
    return 0;
}
Java
// Java implementation to divide N into
// maximum number of segments
// of length a, b and c
import java.util.*;

class GFG 
{
    
    // function to find the maximum
    // number of segments
    static int maximumSegments(int n, int a, 
                            int b, int c)
    {
        // stores the maximum number of
        // segments each index can have
        int dp[] = new int[n + 10];

        // initialize with -1
        Arrays.fill(dp, -1);

        // 0th index will have 0 segments
        // base case
        dp[0] = 0; 

        // traverse for all possible 
        // segments till n
        for (int i = 0; i < n; i++) 
        {
            if (dp[i] != -1) 
            {

                // conditions
                if(i + a <= n )    //avoid buffer overflow
                dp[i + a] = Math.max(dp[i] + 1, 
                                    dp[i + a]);
                                    
                if(i + b <= n )    //avoid buffer overflow
                dp[i + b] = Math.max(dp[i] + 1,     
                                    dp[i + b]);
                                    
                if(i + c <= n )    //avoid buffer overflow
                dp[i + c] = Math.max(dp[i] + 1, 
                                    dp[i + c]);
            }
        }
        return dp[n];
    }

    // Driver code
    public static void main(String arg[])
    {
        int n = 7, a = 5, b = 2, c = 5;
        System.out.print(maximumSegments(n, a, b, c));
    }
}

// This code is contributed by Anant Agarwal.
Python3
# Python implementation 
# to divide N into maximum 
# number of segments of 
# length a, b and c

# function to find 
# the maximum number 
# of segments
def maximumSegments(n, a, b, c) :

    # stores the maximum 
    # number of segments 
    # each index can have
    dp = [-1] * (n + 10)

    # 0th index will have 
    # 0 segments base case
    dp[0] = 0

    # traverse for all possible
    # segments till n
    for i in range(0, n) :
    
        if (dp[i] != -1) :
        
            # conditions
            if(i + a <= n ): # avoid buffer overflow    
                dp[i + a] = max(dp[i] + 1, 
                            dp[i + a])
                            
            if(i + b <= n ): # avoid buffer overflow    
                dp[i + b] = max(dp[i] + 1, 
                            dp[i + b])
                            
            if(i + c <= n ): # avoid buffer overflow    
                dp[i + c] = max(dp[i] + 1, 
                            dp[i + c])

    return dp[n]

# Driver code
n = 7
a = 5
b = 2
c = 5
print (maximumSegments(n, a, 
                    b, c))

# This code is contributed by 
# Manish Shaw(manishshaw1)
C#
// C# implementation to divide N into
// maximum number of segments
// of length a, b and c
using System;

class GFG 
{
    
    // function to find the maximum
    // number of segments
    static int maximumSegments(int n, int a, 
                            int b, int c)
    {
        // stores the maximum number of
        // segments each index can have
        int []dp = new int[n + 10];

        // initialize with -1
        for(int i = 0; i < n + 10; i++)
        dp[i]= -1;
        

        // 0th index will have 0 segments
        // base case
        dp[0] = 0; 

        // traverse for all possible
        // segments till n
        for (int i = 0; i < n; i++) 
        {
            if (dp[i] != -1) 
            {

                // conditions
                if(i + a <= n )    // avoid buffer overflow
                dp[i + a] = Math.Max(dp[i] + 1, 
                                    dp[i + a]);
                                    
                if(i + b <= n )    // avoid buffer overflow
                dp[i + b] = Math.Max(dp[i] + 1, 
                                    dp[i + b]);
                                    
                if(i + c <= n )    // avoid buffer overflow
                dp[i + c] = Math.Max(dp[i] + 1, 
                                    dp[i + c]);
            }
        }
        return dp[n];
    }

    // Driver code
    public static void Main()
    {
        int n = 7, a = 5, b = 2, c = 5;
        Console.Write(maximumSegments(n, a, b, c));
    }
}

// This code is contributed by nitin mittal
PHP
<?php
// PHP implementation to divide 
// N into maximum number of 
// segments of length a, b and c

// function to find the maximum
// number of segments
function maximumSegments($n, $a, 
                        $b, $c)
{
    // stores the maximum 
    // number of segments 
    // each index can have
    $dp = array();

    // initialize with -1
    for($i = 0; $i < $n + 10; $i++)
        $dp[$i]= -1;
    

    // 0th index will have 
    // 0 segments base case
    $dp[0] = 0; 

    // traverse for all possible
    // segments till n
    for ($i = 0; $i < $n; $i++) 
    {
        if ($dp[$i] != -1) 
        {
            // conditions
            if($i + $a <= $n )    // avoid buffer overflow
            $dp[$i + $a] = max($dp[$i] + 1, 
                            $dp[$i + $a]);
                            
            if($i + $b <= $n )    // avoid buffer overflow
            $dp[$i + $b] = max($dp[$i] + 1, 
                            $dp[$i + $b]);
                            
            if($i + $c <= $n )    // avoid buffer overflow
            $dp[$i + $c] = max($dp[$i] + 1, 
                            $dp[$i + $c]);
        }
    }
    return $dp[$n];
}

// Driver code
$n = 7; $a = 5; 
$b = 2; $c = 5;
echo (maximumSegments($n, $a, 
                    $b, $c));

// This code is contributed by 
// Manish Shaw(manishshaw1)
?>
JavaScript
<script>
// JavaScript program implementation to divide N into
// maximum number of segments
// of length a, b and c

    // function to find the maximum
    // number of segments
    function maximumSegments(n, a, b, c)
    {
        // stores the maximum number of
        // segments each index can have
        let dp = [];
  
        // initialize with -1
        for(let i = 0; i < n + 10; i++)
        dp[i]= -1;
  
        // 0th index will have 0 segments
        // base case
        dp[0] = 0; 
  
        // traverse for all possible 
        // segments till n
        for (let i = 0; i < n; i++) 
        {
            if (dp[i] != -1) 
            {
  
                // conditions
                if(i + a <= n )    //avoid buffer overflow
                dp[i + a] = Math.max(dp[i] + 1, 
                                    dp[i + a]);
                                      
                if(i + b <= n )    //avoid buffer overflow
                dp[i + b] = Math.max(dp[i] + 1,     
                                    dp[i + b]);
                                      
                if(i + c <= n )    //avoid buffer overflow
                dp[i + c] = Math.max(dp[i] + 1, 
                                    dp[i + c]);
            }
        }
        return dp[n];
    }
  

// Driver Code

        let n = 7, a = 5, b = 2, c = 5;
        document.write(maximumSegments(n, a, b, c));

// This code is contributed by susmitakundugoaldanga.
</script>

Output
2


Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(N), as we are using extra space for dp array.


Article Tags :
Practice Tags :

Similar Reads