Split a string into maximum number of unique substrings Last Updated : 18 Jul, 2021 Summarize Comments Improve Suggest changes Share Like Article Like Report Given string str, the task is to split the string into the maximum number of unique substrings possible and print their count. Examples: Input: str = "ababccc"Output: 5Explanation:Split the given string into the substrings "a", "b", "ab", "c" and "cc".Therefore, the maximum count of unique substrings is 5. Input: str = "aba"Output: 2 Approach: The problem can be solved by the Greedy approach. Follow the steps below to solve the problem: Initialize a Set S.Iterate over the characters of the string str and for each i and find the substring up to that index.If the given substring is not present in the Set S, insert it updates the maximum count, and remove it from the Set, because the same character cannot be reused.Return the maximum count. Below is the implementation of the above approach: C++ // CPP program for the above approach #include<bits/stdc++.h> using namespace std; // Utility function to find maximum count of // unique substrings by splitting the string int maxUnique(string S, set<string> st) { // Stores maximum count of unique substring // by splitting the string into substrings int mx = 0; // Iterate over the characters of the string for (int i = 1; i <= S.length(); i++) { // Stores prefix substring string tmp = S.substr(0, i); // Check if the current substring // already exists if (st.find(tmp) == st.end()) { // Insert tmp into set st.insert(tmp); // Recursively call for remaining // characters of string mx = max(mx, maxUnique(S.substr(i), st) + 1); // Remove from the set st.erase(tmp); } } // Return answer return mx; } // Function to find the maximum count of // unique substrings by splitting a string // into maximum number of unique substrings int maxUniqueSplit(string S) { set<string> st; return maxUnique(S, st); } // Driver Code int main() { string S = "ababccc"; int res = maxUniqueSplit(S); cout<<res; } // This code is contributed by jana_sayantan. Java // Java program for the above approach import java.io.*; import java.util.*; class Solution { // Function to find the maximum count of // unique substrings by splitting a string // into maximum number of unique substrings public int maxUniqueSplit(String S) { return maxUnique(S, new HashSet<String>()); } // Utility function to find maximum count of // unique substrings by splitting the string public int maxUnique(String S, Set<String> set) { // Stores maximum count of unique substring // by splitting the string into substrings int max = 0; // Iterate over the characters of the string for (int i = 1; i <= S.length(); i++) { // Stores prefix substring String tmp = S.substring(0, i); // Check if the current substring // already exists if (!set.contains(tmp)) { // Insert tmp into set set.add(tmp); // Recursively call for remaining // characters of string max = Math.max(max, maxUnique( S.substring(i), set) + 1); // Remove from the set set.remove(tmp); } } // Return answer return max; } } // Driver Code class GFG { public static void main(String[] args) { Solution st = new Solution(); String S = "ababccc"; int res = st.maxUniqueSplit(S); System.out.println(res); } } Python3 # Python3 program for the above approach # Utility function to find maximum count of # unique substrings by splitting the string def maxUnique(S): global d # Stores maximum count of unique substring # by splitting the string into substrings maxm = 0 # Iterate over the characters of the string for i in range(1, len(S) + 1): # Stores prefix substring tmp = S[0:i] # Check if the current substring # already exists if (tmp not in d): # Insert tmp into set d[tmp] = 1 # Recursively call for remaining # characters of string maxm = max(maxm, maxUnique(S[i:]) + 1) # Remove from the set del d[tmp] # Return answer return maxm # Driver Code if __name__ == '__main__': # Solution st = new Solution() S = "ababccc" d = {} res = maxUnique(S) # d = {} print(res) # This code is contributed by mohit kumar 29. C# // C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to find the maximum count of // unique substrings by splitting a string // into maximum number of unique substrings public int maxUniqueSplit(String S) { return maxUnique(S, new HashSet<String>()); } // Utility function to find maximum count of // unique substrings by splitting the string public int maxUnique(String S, HashSet<String> set) { // Stores maximum count of unique substring // by splitting the string into substrings int max = 0; // Iterate over the characters of the string for (int i = 1; i <= S.Length; i++) { // Stores prefix substring String tmp = S.Substring(0, i); // Check if the current substring // already exists if (!set.Contains(tmp)) { // Insert tmp into set set.Add(tmp); // Recursively call for remaining // characters of string max = Math.Max(max, maxUnique( S.Substring(i), set) + 1); // Remove from the set set.Remove(tmp); } } // Return answer return max; } } // Driver Code public class GFG { public static void Main(String[] args) { Solution st = new Solution(); String S = "ababccc"; int res = st.maxUniqueSplit(S); Console.WriteLine(res); } } // This code contributed by shikhasingrajput JavaScript <script> // Javascript program for the above approach // Utility function to find maximum count of // unique substrings by splitting the string function maxUnique(S, st) { // Stores maximum count of unique substring // by splitting the string into substrings var mx = 0; // Iterate over the characters of the string for (var i = 1; i <= S.length; i++) { // Stores prefix substring var tmp = S.substring(0, i); // Check if the current substring // already exists if (!st.has(tmp)) { // Insert tmp into set st.add(tmp); // Recursively call for remaining // characters of string mx = Math.max(mx, maxUnique(S.substring(i), st) + 1); // Remove from the set st.delete(tmp); } } // Return answer return mx; } // Function to find the maximum count of // unique substrings by splitting a string // into maximum number of unique substrings function maxUniqueSplit(S) { var st = new Set(); return maxUnique(S, st); } // Driver Code var S = "ababccc"; var res = maxUniqueSplit(S); document.write( res); </script> Output: 5 Time Complexity: O(2^N ) Auxiliary Space: O(N) Comment More infoAdvertise with us Next Article Split a string into maximum number of unique substrings R rohit2sahu Follow Improve Article Tags : Strings Backtracking DSA substring partition +1 More Practice Tags : BacktrackingStrings Similar Reads DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on 7 min read Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s 12 min read Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge 14 min read Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st 2 min read Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir 8 min read Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta 15+ min read Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc 15 min read Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T 9 min read Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 4 min read Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Like