NPDA for accepting the language L = {anbn | n>=1}Prerequisite: Basic knowledge of pushdown automata.Problem :Design a non deterministic PDA for accepting the language L = {an bn | n>=1}, i.e.,L = {ab, aabb, aaabbb, aaaabbbb, ......} In each of the string, the number of a's are followed by equal number of b's. ExplanationHere, we need to maintai
2 min read
NPDA for accepting the language L = {ambncm+n | m,n ⥠1}The problem below require basic knowledge of Pushdown Automata.Problem Design a non deterministic PDA for accepting the language L = {am bn cm+n | m,n ⥠1} for eg. ,L = {abcc, aabccc, abbbcccc, aaabbccccc, ......} In each of the string, the total sum of the number of 'aâ and 'b' is equal to the numb
2 min read
NPDA for accepting the language L = {aibjckdl | i==k or j==l,i>=1,j>=1}Prerequisite - Pushdown automata, Pushdown automata acceptance by final state Problem - Design a non deterministic PDA for accepting the language L = {a^i b^j c^k d^l : i==k or j==l, i>=1, j>=1}, i.e., L = {abcd, aabccd, aaabcccd, abbcdd, aabbccdd, aabbbccddd, ......} In each string, the numbe
3 min read
NPDA for accepting the language L = {anb2n| n>=1} U {anbn| n>=1}To understand this question, you should first be familiar with pushdown automata and their final state acceptance mechanism.ProblemDesign a non deterministic PDA for accepting the language L = {an b2n : n>=1} U {an bn : n>=1}, i.e.,L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb, ......} U {ab, aabb
2 min read