Authors :
H. A. Ramasombohitra; T. M. Andriamananjara; H. N. Ramanantsihoarana
Volume/Issue :
Volume 10 - 2025, Issue 9 - September
Google Scholar :
https://tinyurl.com/5n8fvfbp
Scribd :
https://tinyurl.com/39m56upj
DOI :
https://doi.org/10.38124/ijisrt/25sep860
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 30 to 40 days to display the article.
Abstract :
Energy autonomy is a major challenge for portable devices such as smart watches, biometric sensors, and
connected textiles. The integration of photovoltaic cells appears to be a promising solution to overcome the limitations of
rechargeable batteries. This article provides a critical analysis of the main photovoltaic technologies used in wearable
systems, including silicon cells, perovskites, DSSCs, and organic-inorganic hybrid cells. Each technology has distinct
advantages: durability and reliability for silicon, low-light performance for DSSCs, and high efficiency combined with
flexibility for perovskites and hybrid cells. Practical applications in consumer wearable electronics, medical devices, IoT,
and smart textiles illustrate the potential of PVs to provide autonomous power. However, material stability, architecture
optimization, and durability in real-world conditions remain critical challenges. The choice of a suitable photovoltaic
technology is therefore based on a multi-criteria assessment, incorporating energy performance, conditions of use, and
integration constraints.
Keywords :
Portable Devices, Energy Autonomy, Self-Powered IoT, Smart Wearables, Flexible Cells.
References :
- R. Hesham, A. Soltan, et A. Madian, « Energy Harvesting Schemes for Wearable Devices », AEU - International Journal of Electronics and Communications, vol. 138, p. 153888, août 2021, doi: 10.1016/j.aeue.2021.153888.
- J. Wan, R. Zhang, Y. Li, et Y. Li, « Applications of organic solar cells in wearable electronics », Wearable Electronics, vol. 1, p. 26‑40, déc. 2024, doi: 10.1016/j.wees.2024.03.001.
- A. Páez-Montoro, M. García-Valderas, E. Olías-Ruíz, et C. López-Ongil, « Solar Energy Harvesting to Improve Capabilities of Wearable Devices », Sensors, vol. 22, no 10, Art. no 10, janv. 2022, doi: 10.3390/s22103950.
- A. S. Khan et F. U. Khan, « Experimentation of a Wearable Self-Powered Jacket Harvesting Body Heat for Wearable Device Applications », Journal of Sensors, vol. 2021, p. e9976089, déc. 2021, doi: 10.1155/2021/9976089.
- M. Babar, A. Rahman, F. Arif, et G. Jeon, « Energy-harvesting based on internet of things and big data analytics for smart health monitoring », Sustainable Computing: Informatics and Systems, vol. 20, p. 155‑164, déc. 2018, doi: 10.1016/j.suscom.2017.10.009.
- A. Dionisi, D. Marioli, E. Sardini, et M. Serpelloni, « Autonomous Wearable System for Vital Signs Measurement With Energy-Harvesting Module », IEEE Transactions on Instrumentation and Measurement, vol. 65, no 6, p. 1423‑1434, juin 2016, doi: 10.1109/TIM.2016.2519779.
- « Solar energy harvesting for autonomous field devices - Decker - 2014 - IET Wireless Sensor Systems - Wiley Online Library ». Consulté le: 11 juillet 2025. [En ligne]. Disponible sur: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-wss.2013.0011
- T. Wu, M. S. Arefin, J.-M. Redouté, et M. R. Yuce, « A solar energy harvester with an improved MPPT circuit for wearable IoT applications », in Proceedings of the 11th EAI International Conference on Body Area Networks, in BodyNets ’16. Brussels, BEL: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), déc. 2016, p. 166‑170.
- T. Wu, M. S. Arefin, D. Shmilovitz, J.-M. Redoute, et M. R. Yuce, « A flexible and wearable energy harvester with an efficient and fast-converging analog MPPT », in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), oct. 2016, p. 336‑339. doi: 10.1109/BioCAS.2016.7833800.
- S. Barker, D. Brennan, N. G. Wright, et A. B. Horsfall, « Piezoelectric-powered wireless sensor system with regenerative transmit mode », IET Wireless Sensor Systems, vol. 1, no 1, p. 31‑38, mars 2011, doi: 10.1049/iet-wss.2010.0053.
- R. Hamid et M. R. Yuce, « A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique », Sensors and Actuators A: Physical, vol. 257, p. 198‑207, avr. 2017, doi: 10.1016/j.sna.2017.02.026.
- K. A. Kim, F. S. Bagci, et K. L. Dorsey, « Design considerations for photovoltaic energy harvesting in wearable devices », Sci Rep, vol. 12, no 1, p. 18143, oct. 2022, doi: 10.1038/s41598-022-22232-x.
- « Analog Control Algorithm-Based a Photovoltaic Energy Harvesting System for Low-Power Medical Applications | IEEE Conference Publication | IEEE Xplore ». Consulté le: 11 juillet 2025. [En ligne]. Disponible sur: https://ieeexplore.ieee.org/abstract/document/9068173
- A. Proto et al., « Thermal energy harvesting on the bodily surfaces of arms and legs through a wearable thermo-electric generator », Sensors, vol. 18, no 6, p. 1927, 2018.
- F. Huet, V. Boitier, et L. Seguier, « Tunable piezoelectric vibration energy harvester with supercapacitors for WSN in an industrial environment », IEEE Sensors Journal, vol. 22, no 15, p. 15373‑15384, 2022.
- P. Gljušćić, S. Zelenika, D. Blažević, et E. Kamenar, « Kinetic energy harvesting for wearable medical sensors », Sensors, vol. 19, no 22, p. 4922, 2019.
- M. Wijesundara et al., « Design of a Kinetic Energy Harvester for Elephant Mounted Wireless Sensor Nodes of JumboNet », in 2016 IEEE Global Communications Conference (GLOBECOM), déc. 2016, p. 1‑7. doi: 10.1109/GLOCOM.2016.7841730.
- H. H. R. Sherazi, D. Zorbas, et B. O’Flynn, « A comprehensive survey on RF energy harvesting: Applications and performance determinants », Sensors, vol. 22, no 8, p. 2990, 2022.
- Z. Tohidinejad, S. Danyali, M. Valizadeh, R. Seepold, N. TaheriNejad, et M. Haghi, « Designing a Hybrid Energy-Efficient Harvesting System for Head- or Wrist-Worn Healthcare Wearable Devices », Sensors, vol. 24, no 16, p. 5219, janv. 2024, doi: 10.3390/s24165219.
- M. K. Mishu et al., « An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications », Sensors, vol. 21, no 8, p. 2604, janv. 2021, doi: 10.3390/s21082604.
- S. Li et al., « Improvement of photovoltaic performance of perovskite solar cells by interface modification with CaTiO3 », Journal of Power Sources, vol. 449, p. 227504, févr. 2020, doi: 10.1016/j.jpowsour.2019.227504.
- B. Li, L. Qiao, H. Yang, Y. Wang, W. Gu, et B. Du, « Perovskite materials empower sensors and batteries: environmental health monitoring and flexible wearable innovation », J. Mater. Chem. C, vol. 13, no 29, p. 14727‑14742, juill. 2025, doi: 10.1039/D5TC01739D.
- G. Lee et al., « Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source », Energy and Environmental Science, vol. 12, no 10, p. 3182‑3191, oct. 2019, doi: 10.1039/c9ee01944h.
- S. Akin, E. Akman, et S. Sonmezoglu, « FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term Stability », Advanced Functional Materials, vol. 30, no 28, p. 2002964, 2020, doi: 10.1002/adfm.202002964.
- Z. Chen et al., « Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency », ACS Energy Lett., vol. 4, no 6, p. 1258‑1259, juin 2019, doi: 10.1021/acsenergylett.9b00847.
- J. Gong et al., « Highly efficient all-perovskite photovoltaic-powered battery with dual-function viologen for portable electronics », Nat Commun, vol. 16, no 1, p. 7980, août 2025, doi: 10.1038/s41467-025-63272-x.
- R. B. Alnoman, E. Nabil, S. Parveen, M. Hagar, et M. Zakaria, « UV-selective organic absorbers for the cosensitization of greenhouse-integrated dye-sensitized solar cells: synthesis and computational study », RSC Adv., vol. 12, no 18, p. 11420‑11435, avr. 2022, doi: 10.1039/D2RA01099B.
- D. Koteshwar et al., « Effects of methoxy group(s) on D-π-A porphyrin based DSSCs: efficiency enhanced by co-sensitization », Mater. Chem. Front., vol. 6, no 5, p. 580‑592, févr. 2022, doi: 10.1039/D1QM01450A.
- I. Hwang et al., « Effective Photon Management of Non-Surface-Textured Flexible Thin Crystalline Silicon Solar Cells », Cell Reports Physical Science, vol. 1, no 11, p. 100242, nov. 2020, doi: 10.1016/j.xcrp.2020.100242.
- J. Bullock et al., « Efficient silicon solar cells with dopant-free asymmetric heterocontacts », Nat Energy, vol. 1, no 3, p. 15031, janv. 2016, doi: 10.1038/nenergy.2015.31.
- M. A. Green et al., « Solar cell efficiency tables (Version 63) », Progress in Photovoltaics: Research and Applications, vol. 32, no 1, p. 3‑13, 2024, doi: 10.1002/pip.3750.
- M. Sharma, P. R. Pudasaini, F. Ruiz-Zepeda, D. Elam, et A. A. Ayon, « Ultrathin, Flexible Organic–Inorganic Hybrid Solar Cells Based on Silicon Nanowires and PEDOT:PSS », ACS Appl. Mater. Interfaces, vol. 6, no 6, p. 4356‑4363, mars 2014, doi: 10.1021/am500063w.
- « Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells », ResearchGate, doi: 10.1002/smtd.202000744.
- C. Zhao et al., « An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells », Angewandte Chemie International Edition, vol. 60, no 15, p. 8526‑8531, 2021, doi: 10.1002/anie.202100755.
- S. A. Hashemi, S. Ramakrishna, et A. G. Aberle, « Recent progress in flexible–wearable solar cells for self-powered electronic devices », Energy Environ. Sci., vol. 13, no 3, p. 685‑743, mars 2020, doi: 10.1039/C9EE03046H.
- E. Ilén, F. Elsehrawy, E. Palovuori, et J. Halme, « Washable textile embedded solar cells for self-powered wearables », Research Journal of Textile and Apparel, vol. 28, no 1, p. 133‑151, avr. 2022, doi: 10.1108/RJTA-01-2022-0004.
- A. S. Khan et F. U. Khan, « A Wearable Solar Energy Harvesting Based Jacket With Maximum Power Point Tracking for Vital Health Monitoring Systems », IEEE Access, vol. 10, p. 119475‑119495, 2022, doi: 10.1109/ACCESS.2022.3220900.
- D. B. Niranjan, J. Jacob, B. R. Vaidehi, M. Peter, J. Medikonda, et P. K. Namboothiri, « Current status and applications of photovoltaic technology in wearable sensors: a review », Front. Nanotechnol., vol. 5, nov. 2023, doi: 10.3389/fnano.2023.1268931.
- C. Park et al., « Adaptive electronics for photovoltaic, photoluminescent and photometric methods in power harvesting for wireless wearable sensors », Nat Commun, vol. 16, no 1, p. 5808, juill. 2025, doi: 10.1038/s41467-025-60911-1.
- S. Mohsen, A. Zekry, K. Youssef, et M. Abouelatta, « A Self-powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications », Wireless Pers Commun, vol. 116, no 4, p. 3143‑3164, févr. 2021, doi: 10.1007/s11277-020-07840-y.
- N. T. Bui, T. H. Vo, B.-G. Kim, et J. Oh, « Design of a Solar-Powered Portable ECG Device with Optimal Power Consumption and High Accuracy Measurement », Applied Sciences, vol. 9, no 10, p. 2129, janv. 2019, doi: 10.3390/app9102129.
- M. S. Roslan, F. Adan, M. A. Mohammad, N. Norazman, S. Haizam, et Z. Haider, « Development of portable solar storage device », J. Phys.: Conf. Ser., vol. 1371, no 1, p. 012002, nov. 2019, doi: 10.1088/1742-6596/1371/1/012002.
- P. Jokic et M. Magno, « Powering smart wearable systems with flexible solar energy harvesting », in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), mai 2017, p. 1‑4. doi: 10.1109/ISCAS.2017.8050615.
- M. E. Başoğlu et S. M. Üstek, « Prototype development of a solar-powered backpack for camping applications », GUJS Part C, vol. 9, no 4, p. 589‑596, déc. 2021, doi: 10.29109/gujsc.981271.
- N. Ding et al., « A solar-powered wearable physiological sensing system with self-sustained energy management: Design and implementation », Sustainable Energy Technologies and Assessments, vol. 82, p. 104548, oct. 2025, doi: 10.1016/j.seta.2025.104548.
- C.-H. Chen et al., « Reliable perovskite indoor photovoltaics for self-powered devices », Natl Sci Rev, vol. 12, no 8, p. nwaf242, août 2025, doi: 10.1093/nsr/nwaf242.
- J. Min et al., « An autonomous wearable biosensor powered by a perovskite solar cell », Nat Electron, vol. 6, no 8, p. 630‑641, août 2023, doi: 10.1038/s41928-023-00996-y.
- N. Zhang et al., « Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics », Matter, vol. 2, no 5, p. 1260‑1269, mai 2020, doi: 10.1016/j.matt.2020.01.022.
Energy autonomy is a major challenge for portable devices such as smart watches, biometric sensors, and
connected textiles. The integration of photovoltaic cells appears to be a promising solution to overcome the limitations of
rechargeable batteries. This article provides a critical analysis of the main photovoltaic technologies used in wearable
systems, including silicon cells, perovskites, DSSCs, and organic-inorganic hybrid cells. Each technology has distinct
advantages: durability and reliability for silicon, low-light performance for DSSCs, and high efficiency combined with
flexibility for perovskites and hybrid cells. Practical applications in consumer wearable electronics, medical devices, IoT,
and smart textiles illustrate the potential of PVs to provide autonomous power. However, material stability, architecture
optimization, and durability in real-world conditions remain critical challenges. The choice of a suitable photovoltaic
technology is therefore based on a multi-criteria assessment, incorporating energy performance, conditions of use, and
integration constraints.
Keywords :
Portable Devices, Energy Autonomy, Self-Powered IoT, Smart Wearables, Flexible Cells.