IBM Quantum reposted this
A new paper, now published in Nature Computational Science, introduces "Quantum Approximate Multi-Objective Optimization," a breakthrough from researchers at IBM, Los Alamos National Laboratory, and Zuse Institute Berlin. This work represents one of the most promising proposals for near-term demonstrations of quantum advantage in combinatorial optimization, with enormous relevance across industry and science: https://lnkd.in/ew7Pe2K5 Multi-objective optimization is a branch of mathematical optimization that deals with problems involving multiple often conflicting goals—e.g., constructing financial portfolios that minimize risk while maximizing returns. These problems can be extremely challenging for classical methods as the number of objective functions increases, even in cases where the single-objective version of the problem is easily solvable. The study demonstrates how quantum computers can approximate the optimal Pareto front, i.e., the set of all optimal trade-offs between conflicting objectives, showing better scaling than classical algorithms. Sampling good solutions from vast solution spaces is a task at which quantum computers excel, and the researchers take full advantage of that in their work. This marks an important step toward practical quantum advantage in optimization, and shows the value of exploring quantum capabilities beyond conventional problem classes. The paper is the latest outcome from our quantum optimization technical working group, and I encourage you to have a look.