
LETTER Communicated by Peter Dayan

Nonlinear Component Analysis as a Kernel Eigenvalue
Problem

Bernhard Schölkopf
Max-Planck-Institut für biologische Kybernetik, 72076 Tübingen, Germany

Alexander Smola
Klaus-Robert Müller
GMD First (Forschungszentrum Informationstechnik), 12489 Berlin, Germany

A new method for performing a nonlinear form of principal component
analysis is proposed. By the use of integral operator kernel functions, one
can efficiently compute principal components in high-dimensional fea-
ture spaces, related to input space by some nonlinear map—for instance,
the space of all possible five-pixel products in 16×16 images. We give the
derivation of the method and present experimental results on polynomial
feature extraction for pattern recognition.

1 Introduction

Principal component analysis (PCA) is a powerful technique for extracting
structure from possibly high-dimensional data sets. It is readily performed
by solving an eigenvalue problem or using iterative algorithms that estimate
principal components (for reviews of the existing literature, see Jolliffe, 1986,
and Diamantaras & Kung, 1996). PCA is an orthogonal transformation of
the coordinate system in which we describe our data. The new coordinate
values by which we represent the data are called principal components. It is
often the case that a small number of principal components is sufficient to
account for most of the structure in the data. These are sometimes called
factors or latent variables of the data.

We are interested not in principal components in input space but in prin-
cipal components of variables, or features, which are nonlinearly related to
the input variables. Among these are variables obtained by taking arbitrary
higher-order correlations between input variables. In the case of image anal-
ysis, this amounts to finding principal components in the space of products
of input pixels.

To this end, we are computing dot products in feature space by means of
kernel functions in input space. Given any algorithm that can be expressed
solely in terms of dot products (i.e., without explicit usage of the variables
themselves), this kernel method enables us to construct different nonlinear

Neural Computation 10, 1299–1319 (1998) c© 1998 Massachusetts Institute of Technology

1300 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

versions of it (Aizerman, Braverman, & Rozonoer, 1964; Boser, Guyon, &
Vapnik, 1992). Although this general fact was known (Burges, private com-
munication), the machine learning community has made little use of it, the
exception being support vector machines (Vapnik, 1995). In this article, we
give an example of applying this method in the domain of unsupervised
learning, to obtain a nonlinear form of PCA.

In the next section, we review the standard PCA algorithm. In order to
be able to generalize it to the nonlinear case, we formulate it in a way that
uses exclusively dot products. In section 3, we discuss the kernel method
for computing dot products in feature spaces. Together, these two sections
form the basis for section 4, which presents the proposed kernel-based algo-
rithm for nonlinear PCA. First experimental results on kernel-based feature
extraction for pattern recognition are given in section 5. We conclude with a
discussion (section 6) and an appendix containing some technical material
that is not essential for the main thread of the argument.

2 PCA in Feature Spaces

Given a set of centered observations xk, k = 1, . . . ,M, xk ∈ RN,
∑M

k=1 xk = 0,
PCA diagonalizes the covariance matrix,1

C = 1
M

M∑
j=1

xjx>j . (2.1)

To do this, one has to solve the eigenvalue equation,

λv = Cv, (2.2)

for eigenvalues λ ≥ 0 and v ∈ RN\{0}. As Cv = 1
M

∑M
j=1(xj ·v)xj, all solutions

v with λ 6= 0 must lie in the span of x1, . . . , xM; hence, equation 2.2 in that
case is equivalent to

λ(xk · v) = (xk · Cv) for all k = 1, . . . ,M. (2.3)

In the remainder of this section, we describe the same computation in an-
other dot product space F, which is related to the input space by a possibly
nonlinear map,

8 : RN → F, x 7→ X. (2.4)

1 More precisely, the covariance matrix is defined as the expectation of xx>; for conve-
nience, we shall use the same term to refer to the estimate in equation 2.1 of the covariance
matrix from a finite sample.

Nonlinear Component Analysis 1301

Note that F, which we will refer to as the feature space, could have an
arbitrarily large, possibly infinite, dimensionality. Here and in the following,
uppercase characters are used for elements of F, and lowercase characters
denote elements of RN.

Again, we assume that we are dealing with centered data, that is
∑M

k=18

(xk) = 0 (we shall return to this point later). Using the covariance matrix
in F,

C̄ = 1
M

M∑
j=1

8(xj)8(xj)
> (2.5)

(if F is infinite dimensional, we think of 8(xj)8(xj)
> as the linear operator

that maps X ∈ F to 8(xj)(8(xj) · X)) we now have to find eigenvalues λ ≥ 0
and eigenvectors V ∈ F\{0} satisfying,

λV = C̄V. (2.6)

Again, all solutions V with λ 6= 0 lie in the span of 8(x1), . . . , 8(xM). For
us, this has two useful consequences. First, we may instead consider the set
of equations,

λ(8(xk) ·V) = (8(xk) · C̄V) for all k = 1, . . . ,M, (2.7)

and, second, there exist coefficients αi (i = 1, . . . ,M) such that,

V =
M∑

i=1

αi8(xi). (2.8)

Combining equations 2.7 and 2.8, we get

λ

M∑
i=1

αi(8(xk) ·8(xi)) = 1
M

M∑
i=1

αi(8(xk) ·
M∑

j=1

8(xj))(8(xj) ·8(xi))

for all k = 1, . . . ,M. (2.9)

Defining an M×M matrix K by

Kij := (8(xi) ·8(xj)), (2.10)

this reads

MλKα = K2α, (2.11)

1302 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

whereαdenotes the column vector with entriesα1, . . . , αM. To find solutions
of equation 2.11, we solve the eigenvalue problem,

Mλα = Kα, (2.12)

for nonzero eigenvalues. A justification of this procedure is given in ap-
pendix A.

Let λ1 ≤ λ2 ≤ · · · ≤ λM denote the eigenvalues of K (i.e., the solutions
Mλ of equation 2.12), and α1, . . . ,αM the corresponding complete set of
eigenvectors, with λp being the first nonzero eigenvalue (assuming 8 6≡ 0).
We normalize αp, . . . ,αM by requiring that the corresponding vectors in F
be normalized, that is,

(Vk ·Vk) = 1 for all k = p, . . . ,M. (2.13)

By virtue of equations 2.8 and 2.12, this translates into a normalization
condition for αp, . . . ,αM:

1 =
M∑

i,j=1

αk
i α

k
j (8(xi) ·8(xj)) =

M∑
i,j=1

αk
i α

k
j Kij

= (αk · Kαk) = λk(α
k ·αk). (2.14)

For the purpose of principal component extraction, we need to compute
projections onto the eigenvectors Vk in F (k = p, . . . ,M). Let x be a test
point, with an image 8(x) in F; then

(Vk ·8(x)) =
M∑

i=1

αk
i (8(xi) ·8(x)) (2.15)

may be called its nonlinear principal components corresponding to 8.
In summary, the following steps were necessary to compute the principal

components: (1) compute the matrix K, (2) compute its eigenvectors and
normalize them in F, and (3) compute projections of a test point onto the
eigenvectors.2

For the sake of simplicity, we have made the assumption that the obser-
vations are centered. This is easy to achieve in input space but harder in F,
because we cannot explicitly compute the mean of the 8(xi) in F. There is,
however, a way to do it, and this leads to slightly modified equations for
kernel-based PCA (see appendix B).

2 Note that in our derivation we could have used the known result (e.g., Kirby &
Sirovich, 1990) that PCA can be carried out on the dot product matrix (xi · xj)ij instead of
equation 2.1; however, for the sake of clarity and extendability (in appendix B, we shall
consider the question how to center the data in F), we gave a detailed derivation.

Nonlinear Component Analysis 1303

Before we proceed to the next section, which more closely investigates
the role of the map 8, the following observation is essential: 8 can be an
arbitrary nonlinear map into the possibly high-dimensional space F, for ex-
ample, the space of all dth order monomials in the entries of an input vector.
In that case, we need to compute dot products of input vectors mapped by8,
at a possibly prohibitive computational cost. The solution to this problem,
described in the following section, builds on the fact that we exclusively
need to compute dot products between mapped patterns (in equations 2.10
and 2.15); we never need the mapped patterns explicitly.

3 Computing Dot Products in Feature Spaces

In order to compute dot products of the form (8(x) · 8(y)), we use kernel
representations,

k(x,y) = (8(x) ·8(y)), (3.1)

which allow us to compute the value of the dot product in F without having
to carry out the map8. This method was used by Boser et al. (1992) to extend
the Generalized Portrait hyperplane classifier of Vapnik and Chervonenkis
(1974) to nonlinear support vector machines. To this end, they substitute a
priori chosen kernel functions k for all occurrences of dot products, obtaining
decision functions

f (x) = sgn

(∑̀
i=1

νik(x, xi)+ b

)
. (3.2)

Aizerman et al. (1964) call F the linearization space, and use it in the context
of the potential function classification method to express the dot product
between elements of F in terms of elements of the input space. If F is high-
dimensional, we would like to be able to find a closed-form expression for k
that can be efficiently computed. Aizerman et al. (1964) consider the possi-
bility of choosing k a priori, without being directly concerned with the cor-
responding mapping8 into F. A specific choice of k might then correspond
to a dot product between patterns mapped with a suitable8. A particularly
useful example, which is a direct generalization of a result proved by Poggio
(1975, lemma 2.1) in the context of polynomial approximation, is

(x · y)d =
 N∑

j=1

xj · yj

d

=
N∑

j1,...,jd=1

xj1 · . . . · xjd · yj1 · . . . · yjd = (Cd(x) · Cd(y)), (3.3)

1304 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

where Cd maps x to the vector Cd(x)whose entries are all possible dth degree
ordered products of the entries of x. For instance (Vapnik, 1995), if x =
(x1, x2), then C2(x) = (x2

1, x2
2, x1x2, x2x1), or, yielding the same value of the

dot product,

82(x) = (x2
1, x2

2,
√

2 x1x2). (3.4)

For this example, it is easy to verify that (x · y)2 = (x2
1, x2

2,
√

2 x1x2)(y2
1, y2

2,√
2 y1y2)

> = (82(x) ·82(y)). In general, the function

k(x,y) = (x · y)d (3.5)

corresponds to a dot product in the space of dth-order monomials of the
input coordinates. If x represents an image with the entries being pixel
values, we can thus easily work in the space spanned by products of any
d pixels—provided that we are able to do our work solely in terms of dot
products, without any explicit use of a mapped pattern8d(x). The latter lives
in a possibly very high-dimensional space: even though we will identify
terms like x1x2 and x2x1 into one coordinate of F, as in equation 3.4, the
dimensionality of F still is (N+d−1)!

d!(N−1)! and thus grows like Nd. For instance, 16×
16 pixel input images and a polynomial degree d = 5 yield a dimensionality
of 1010. Thus, using kernels of the form in equation 3.5 is our only way to
take into account higher-order statistics without a combinatorial explosion
of time and memory complexity.

The general question that function k does correspond to a dot product in
some space F has been discussed by Boser et al. (1992) and Vapnik (1995):
Mercer’s theorem of functional analysis implies that if k is a continuous ker-
nel of a positive integral operator, there exists a mapping into a space where
k acts as a dot product (for details, see appendix C). Besides equation 3.5,
radial basis functions,

k(x,y) = exp
(
−‖x− y‖2

2 σ 2

)
, (3.6)

and sigmoid kernels,

k(x,y) = tanh(κ(x · y)+2), (3.7)

have been used in support vector machines. These different kernels allow
the construction of polynomial classifiers, radial basis function classifiers,
and neural networks with the support vector algorithm, which exhibit very
similar accuracy. In addition, they all construct their decision functions from
an almost identical subset of a small number of training patterns, the support
vectors (Schölkopf, Burges, & Vapnik, 1995).

Nonlinear Component Analysis 1305

The application of equation 3.1 to our problem is straightforward. We
simply substitute an a priori chosen kernel function k(x,y) for all occur-
rences of (8(x)·8(y)). The choice of k then implicitly determines the mapping
8 and the feature space F.

4 Kernel PCA

4.1 The Algorithm. To perform kernel-based PCA (see Figure 1), hence-
forth referred to as kernel PCA, the following steps have to be carried out.
First, we compute the matrix Kij = (k(xi, xj))ij. Next, we solve equation 2.12
by diagonalizing K and normalize the eigenvector expansion coefficients αn

by requiring λn(αn · αn) = 1. To extract the principal components (corre-
sponding to the kernel k) of a test point x, we then compute projections onto
the eigenvectors by (cf. equation 2.15 and Figure 2),

(Vn ·8(x)) =
M∑

i=1

αn
i k(xi, x). (4.1)

If we use a kernel as described in section 3, we know that this procedure
exactly corresponds to standard PCA in some high-dimensional feature
space, except that we do not need to perform expensive computations in that
space. In practice, our algorithm is not equivalent to the form of nonlinear
PCA that can be obtained by explicitly mapping into the feature space F.
Even though the rank of the matrix K is always limited by the sample size, we
may not be able to compute this matrix if the dimensionality is prohibitively
high. In that case, using kernels is imperative.

4.2 Properties of (Kernel) PCA. If we use a kernel that satisfies the con-
ditions given in section 3, we know that we are in fact doing a standard
PCA in F. Consequently, all mathematical and statistical properties of PCA
(see, e.g., Jolliffe, 1986; Diamantaras & Kung, 1996) carry over to kernel-
based PCA, with the modifications that they become statements concerning
F rather than RN. In F, we can thus assert that PCA is the orthogonal basis
transformation with the following properties (assuming that the eigenvec-
tors are sorted in descending order of the eigenvalue size): (1) the first q
(q ∈ {1, . . . ,M}) principal components, that is, projections on eigenvectors,
carry more variance than any other q orthogonal directions, (2) the mean-
squared approximation error in representing the observations by the first
q principal components is minimal, (3) the principal components are un-
correlated, and (4) the first q principal components have maximal mutual
information with respect to the inputs (this holds under gaussian assump-
tions, and thus depends on the data and the chosen kernel).

We conclude this section by noting one general property of kernel PCA
in input space: for kernels that depend on only dot products or distances

1306 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

R2
linear PCA

R2

F
Φ

kernel PCA

k

k(x,y) = (x.y)

e.g. k(x,y) = (x.y)d

x

x
x xx

x

x

x
xx

x

x

x

x
x xx

x

x

x
xx

x

x

x

x

x
x

x
x

x

x x

x

x

x

Figure 1: The basic idea of kernel PCA. In some high-dimensional feature space
F (bottom right), we are performing linear PCA, just like a PCA in input space
(top). Since F is nonlinearly related to input space (via 8), the contour lines of
constant projections onto the principal eigenvector (drawn as an arrow) become
nonlinear in input space. Note that we cannot draw a preimage of the eigenvector
in input space, because it may not even exist. Crucial to kernel PCA is the fact
that there is no need to carry out the map into F. All necessary computations
are carried out by the use of a kernel function k in input space (here: R2).

in input space (as all the examples that we have given so far do), kernel
PCA has the property of unitary invariance, following directly from the
fact that both the eigenvalue problem and the feature extraction depend on
only kernel values. This ensures that the features extracted do not depend
on which orthonormal coordinate system we use for representing our input
data.

4.3 Computational Complexity. A fifth-order polynomial kernel on a
256-dimensional input space yields a 1010-dimensional feature space. For
two reasons, kernel PCA can deal with this huge dimensionality. First, we
do not need to look for eigenvectors in the full space F, but just in the sub-
space spanned by the images of our observations xk in F. Second, we do not

Nonlinear Component Analysis 1307

Σ
(V.Φ(x)) = Σ αi k (xi,x)

input vector x

sample x1, x2, x3,...

comparison: k(xi,x)

feature value

weights (eigenvector
 coefficients)α1 α2 α3 α4

k k k k

Figure 2: Feature extraction architecture in kernel PCA (cf. equation 4.1). In the
first layer, the input vector is compared to the sample via a kernel function,
chosen a priori (e.g., polynomial, gaussian, or sigmoid). The outputs are then
linearly combined using weights, which are found by solving an eigenvector
problem.

need to compute dot products explicitly between vectors in F (which can
be impossible in practice, even if the vectors live in a lower-dimensional
subspace) because we are using kernel functions. Kernel PCA thus is com-
putationally comparable to a linear PCA on ` observations with an ` × `
dot product matrix. If k is easy to compute, as for polynomial kernels, for
example, the computational complexity is hardly changed by the fact that
we need to evaluate kernel functions rather than just dot products. Further-
more, when we need to use a large number ` of observations, we may want
to work with an algorithm for computing only the largest eigenvalues, as,
for instance, the power method with deflation (for a discussion, see Dia-
mantaras & Kung, 1996). In addition, we can consider using an estimate of
the matrix K, computed from a subset of M < ` examples, while still extract-
ing principal components from all ` examples (this approach was chosen in
some of our experiments described below).

The situation can be different for principal component extraction. There,
we have to evaluate the kernel function M times for each extracted principal
component (see equation 4.1), rather than just evaluating one dot product
as for a linear PCA. Of course, if the dimensionality of F is 1010, this is still
vastly faster than linear principal component extraction in F. Still, in some
cases (e.g., if we were to extract principal components as a preprocessing
step for classification), we might want to speed things up. This can be done
by a technique proposed by Burges (1996) in the context of support vector
machines. In the present setting, we approximate each eigenvector V =∑`

i=1 αi8(xi) (see equation 2.8) by another vector Ṽ =∑m
j=1 βj8(zj), where

1308 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

m < ` is chosen a priori according to the desired speedup, and zj ∈ RN, j =
1, . . . ,m. This is done by minimizing the squared difference ρ = ‖V− Ṽ‖2.
The crucial point is that this also can be done without explicitly dealing with
the possibly high-dimensional space F. As

ρ = ‖V‖2 +
m∑

i,j=1

βiβjk(zi, zj)− 2
∑̀
i=1

m∑
j=1

αiβjk(xi, zj), (4.2)

the gradient of ρ with respect to the βj and the zj is readily expressed in
terms of the kernel function; thus, ρ can be minimized by gradient descent.

Finally, although kernel principal component extraction is computation-
ally more expensive than its linear counterpart, this additional investment
can pay back afterward. In experiments on classification based on the ex-
tracted principal components, we found that when we trained on nonlinear
features, it was sufficient to use a linear support vector machine to con-
struct the decision boundary. Linear support vector machines, however, are
much faster in classification speed than nonlinear ones. This is due to the
fact that for k(x,y) = (x · y), the support vector decision function (see equa-
tion 3.2) can be expressed with a single weight vector w = ∑`

i=1 νixi as
f (x) = sgn((x · w) + b). Thus the final stage of classification can be done
extremely fast.

4.4 Interpretability and Variable Selection. In PCA, it is sometimes de-
sirable to be able to select specific axes that span the subspace into which
one projects in doing principal component extraction. In this way, it may, for
instance, be possible to choose variables that are more accessible to interpre-
tation. In the nonlinear case, there is an additional problem: some directions
in F do not have preimages in input space. To make this plausible, note that
the linear span of the training examples mapped into feature space can have
dimensionality up to M (the number of examples). If this exceeds the di-
mensionality of input space, it is rather unlikely that each vector of the form
in equation 2.8 has a preimage. To get interpretability, we thus need to find
directions in input space (i.e., input variables) whose images under8 span
the PCA subspace in F. This can be done with an approach akin to the one
already described. We could parameterize our set of desired input variables
and run the minimization of equation 4.2 only over those parameters. The
parameters can be, for example, group parameters, which determine the
amount of translation, say, starting from a set of images.

4.5 Dimensionality Reduction, Feature Extraction, and Reconstruction.
Unlike linear PCA, the proposed method allows the extraction of a number
of principal components that can exceed the input dimensionality. Suppose
that the number of observations M exceeds the input dimensionality N. Lin-
ear PCA, even when it is based on the M×M dot product matrix, can find at

Nonlinear Component Analysis 1309

most N nonzero eigenvalues; they are identical to the nonzero eigenvalues
of the N × N covariance matrix. In contrast, kernel PCA can find up to M
nonzero eigenvalues—a fact that illustrates that it is impossible to perform
kernel PCA directly on an N × N covariance matrix. Even more features
could be extracted by using several kernels.

Being just a basis transformation, standard PCA allows the reconstruction
of the original patterns xi, i = 1, . . . , `, from a complete set of extracted
principal components (xi · vj), j = 1, . . . , `, by expansion in the eigenvector
basis. Even from an incomplete set of components, good reconstruction
is often possible. In kernel PCA, this is more difficult. We can reconstruct
the image of a pattern in F from its nonlinear components; however, if we
have only an approximate reconstruction, there is no guarantee that we can
find an exact preimage of the reconstruction in input space. In that case,
we would have to resort to an approximation method (cf. equation 4.2).
Alternatively, we could use a suitable regression method for estimating the
reconstruction mapping from the kernel-based principal components to the
inputs.

5 Experiments

5.1 Toy Examples. To provide some insight into how PCA in F be-
haves in input space, we show a set of experiments with an artificial two-
dimensional data set, using polynomial kernels (cf. equation 3.5) of degree 1
through 4 (see Figure 3). Linear PCA (on the left) leads to only two nonzero
eigenvalues, as the input dimensionality is 2. In contrast, nonlinear PCA al-
lows the extraction of further components. In the figure, note that nonlinear
PCA produces contour lines (of constant feature value), which reflect the
structure in the data better than in linear PCA. In all cases, the first principal
component varies monotonically along the parabola underlying the data.
In the nonlinear cases, the second and the third components show behav-
ior that is similar for different polynomial degrees. The third component,
which comes with small eigenvalues (rescaled to sum to 1), seems to pick
up the variance caused by the noise, as can be nicely seen in the case of
degree 2. Dropping this component would thus amount to noise reduction.
Further toy examples, using radial basis function kernels (see equation 3.6)
and neural network–type sigmoid kernels (see equation 3.7), are shown in
Figures 4 and 5.

5.2 Character Recognition. In this experiment, we extracted nonlinear
principal components from a handwritten character database, using ker-
nel PCA in the form given in appendix B. We chose the US Postal Service
(USPS) database of handwritten digits collected from mail envelopes in Buf-
falo. This database contains 9298 examples of dimensionality 256; 2007 of
them make up the test set. For computational reasons, we decided to use
a subset of 3000 training examples for the matrix K. To assess the utility of

1310 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.000
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.291
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.709

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.034
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.345
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.621

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.026
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.395
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.570

−1 0 1
−0.5

0

0.5

1

Eigenvalue=0.021
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.418
−1 0 1

−0.5

0

0.5

1

Eigenvalue=0.552

Figure 3: Two-dimensional toy example, with data generated in the following
way: x values have uniform distribution in [−1, 1], y values are generated from
yi = x2

i + ξ , where ξ is normal noise with standard deviation 0.2. From left to
right, the polynomial degree in the kernel (see equation 3.5) increases from 1 to 4;
from top to bottom, the first three eigenvectors are shown in order of decreasing
eigenvalue size. The figures contain lines of constant principal component value
(contour lines); in the linear case, these are orthogonal to the eigenvectors. We
did not draw the eigenvectors; as in the general case, they live in a higher-
dimensional feature space.

the components, we trained a soft margin hyperplane classifier (Vapnik &
Chervonenkis, 1974; Cortes & Vapnik, 1995) on the classification task. This
is a special case of support vector machines, using the standard dot prod-
uct as a kernel function. It simply tries to separate the training data by a
hyperplane with large margin.

Table 1 illustrates two advantages of using nonlinear kernels. First, per-
formance of a linear classifier trained on nonlinear principal components is
better than for the same number of linear components; second, the perfor-
mance for nonlinear components can be further improved by using more
components than is possible in the linear case. The latter is related to the
fact that there are many more higher-order features than there are pixels
in an image. Regarding the first point, note that extracting a certain num-
ber of features in a 1010-dimensional space constitutes a much higher re-
duction of dimensionality than extracting the same number of features in
256-dimensional input space.

Nonlinear Component Analysis 1311

Figure 4: Two-dimensional toy example with three data clusters (gaussians with
standard deviation 0.1, depicted region: [−1, 1]× [−0.5, 1]): first eight nonlinear

principal components extracted with k(x,y) = exp(−‖x−y‖2
0.1). Note that the first

two principal components (top left) nicely separate the three clusters. Compo-
nents 3–5 split up the clusters into halves. Similarly, components 6–8 split them
again, in a way orthogonal to the above splits. Thus, the first eight components
divide the data into 12 regions. The Matlab code used for generating this figure
can be obtained from http://svm.first.gmd.de.

Figure 5: Two-dimensional toy example with three data clusters (gaussians with
standard deviation 0.1, depicted region: [−1, 1]× [−0.5, 1]): first three nonlinear
principal components extracted with k(x,y) = tanh

(
2(x · y)+ 1

)
. The first two

principal components (top left) are sufficient to separate the three clusters, and
the third component splits the clusters into halves.

For all numbers of features, the optimal degree of kernels to use is around
4, which is compatible with support vector machine results on the same data
set (Schölkopf, Burges, & Vapnik, 1995). Moreover, with only one exception,
the nonlinear features are superior to their linear counterparts. The resulting
error rate for the best of our classifiers (4.0%) is competitive with convolu-
tional five-layer neural networks (5.0% were reported by LeCun et al., 1989)
and nonlinear support vector classifiers (4.0%, Schölkopf, Burges, & Vapnik,
1995); it is much better than linear classifiers operating directly on the image
data (a linear support vector machine achieves 8.9%; Schölkopf, Burges, &
Vapnik, 1995). These encouraging results have been reproduced on an object
recognition task (Schölkopf, Smola, & Müller, 1996).

1312 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

Table 1: Test Error Rates on the USPS Handwritten Digit Database.

Test Error Rate for Degree

Number of components 1 2 3 4 5 6 7

32 9.6 8.8 8.1 8.5 9.1 9.3 10.8
64 8.8 7.3 6.8 6.7 6.7 7.2 7.5

128 8.6 5.8 5.9 6.1 5.8 6.0 6.8
256 8.7 5.5 5.3 5.2 5.2 5.4 5.4
512 N.A. 4.9 4.6 4.4 5.1 4.6 4.9

1024 N.A. 4.9 4.3 4.4 4.6 4.8 4.6
2048 N.A. 4.9 4.2 4.1 4.0 4.3 4.4

Note: Linear support vector machines were trained on nonlinear principal com-
ponents extracted by PCA with kernel (3.5), for degrees 1 through 7. In the case
of degree 1, we are doing standard PCA, with the number of nonzero eigenval-
ues being at most the dimensionality of the space, 256. Clearly, nonlinear principal
components afford test error rates that are superior to the linear case (degree 1).

6 Discussion

6.1 Feature Extraction for Classification. This article presented a new
technique for nonlinear PCA. To develop this technique, we made use of
a kernel method so far used only in supervised learning (Vapnik, 1995).
Kernel PCA constitutes a first step toward exploiting this technique for a
large class of algorithms.

In experiments comparing the utility of kernel PCA features for pattern
recognition using a linear classifier, we found two advantages of nonlin-
ear kernels. First, nonlinear principal components afforded better recog-
nition rates than corresponding numbers of linear principal components;
and, second, the performance for nonlinear components can be improved
by using more components than is possible in the linear case. We have not
yet compared kernel PCA to other techniques for nonlinear feature extrac-
tion and dimensionality reduction. We can, however, compare results with
other feature extraction methods used in the past by researchers working
on the USPS classification problem. Our system of kernel PCA feature ex-
traction plus linear support vector machine, for instance, performed better
than LeNet1 (LeCun et al., 1989). Although the latter result was obtained
a number of years ago, LeNet1 nevertheless provides an architecture that
contains a great deal of prior information about the handwritten character
classification problem. It uses shared weights to improve transformation
invariance and a hierarchy of feature detectors resembling parts of the hu-
man visual system. In addition, our features were extracted without taking
into account that we want to do classification. Clearly, in supervised learn-
ing, where we are given a set of labeled observations (x1, y1), . . . , (x`, y`), it

Nonlinear Component Analysis 1313

would seem advisable to make use of the labels not only during the training
of the final classifier but also in the stage of feature extraction.

Finally, we note that a similar approach can be taken in the case of re-
gression estimation.

6.2 Feature Space and the Curse of Dimensionality. We are doing PCA
in 1010-dimensional feature spaces, yet getting results in finite time that
are comparable to state-of-the-art techniques. In fact, however, we are not
working in the full feature space, but in a comparably small linear subspace
of it, whose dimension equals at most the number of observations. The
method automatically chooses this subspace and provides a means of tak-
ing advantage of the lower dimensionality. An approach that consisted in
explicitly of mapping into feature space and then performing PCA would
have severe difficulties at this point. Even if PCA was done based on an
M ×M dot product matrix (M being the sample size), whose diagonaliza-
tion is tractable, it would still be necessary to evaluate dot products in a
1010-dimensional feature space to compute the entries of the matrix in the
first place. Kernel-based methods avoid this problem; they do not explicitly
compute all dimensions of F (loosely speaking, all possible features), but
work only in a relevant subspace of F.

6.3 Comparison to Other Methods for Nonlinear PCA. Starting from
some of the properties characterizing PCA (see above), it is possible to de-
velop a number of possible generalizations of linear PCA to the nonlinear
case. Alternatively, one may choose an iterative algorithm that adaptively
estimates principal components and make some of its parts nonlinear to
extract nonlinear features.

Rather than giving a full review of this field here, we briefly describe
five approaches and refer readers to Diamantaras and Kung (1996) for more
details.

6.3.1 Hebbian Networks. Initiated by the pioneering work of Oja (1982),
a number of unsupervised neural network algorithms computing principal
components have been proposed. Compared to the standard approach of
diagonalizing the covariance matrix, they have advantages—for instance,
when the data are nonstationary. Nonlinear variants of these algorithms
are obtained by adding nonlinear activation functions. The algorithms then
extract features that the authors have referred to as nonlinear principal
components. These approaches, however, do not have the geometrical in-
terpretation of kernel PCA as a standard PCA in a feature space nonlinearly
related to input space, and it is thus more difficult to understand what ex-
actly they are extracting.

6.3.2 Autoassociative Multilayer Perceptrons. Consider a linear three-
layer perceptron with a hidden layer smaller than the input. If we train

1314 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

it to reproduce the input values as outputs (i.e., use it in autoassociative
mode), then the hidden unit activations form a lower-dimensional repre-
sentation of the data, closely related to PCA (see, for instance, Diamantaras
& Kung, 1996). To generalize to a nonlinear setting, one uses nonlinear acti-
vation functions and additional layers.3 While this can be considered a form
of nonlinear PCA, the resulting network training consists of solving a hard
nonlinear optimization problem, with the possibility of getting trapped in
local minima, and thus with a dependence of the outcome on the starting
point of the training. Moreover, in neural network implementations, there is
often a risk of getting overfitting. Another drawback of neural approaches
to nonlinear PCA is that the number of components to be extracted has to
be specified in advance. As an aside, note that hyperbolic tangent kernels
can be used to extract neural network–type nonlinear features using kernel
PCA (see Figure 5). The principal components of a test point x in that case
take the form (see Figure 2)

∑
i α

n
i tanh · (κ(xi, x)+2).

6.3.3 Principal Curves. An approach with a clear geometric interpreta-
tion in input space is the method of principal curves (Hastie & Stuetzle,
1989), which iteratively estimates a curve (or surface) capturing the struc-
ture of the data. The data are mapped to the closest point on a curve, and
the algorithm tries to find a curve with the property that each point on the
curve is the average of all data points projecting onto it. It can be shown
that the only straight lines satisfying the latter are principal components,
so principal curves are indeed a generalization of the latter. To compute
principal curves, a nonlinear optimization problem has to be solved. The
dimensionality of the surface, and thus the number of features to extract, is
specified in advance.

6.3.4 Locally Linear PCA. In cases where a linear PCA fails because the
dependences in the data vary nonlinearly with the region in input space, it
can be fruitful to use an approach where linear PCA is applied locally (e.g.,
Bregler & Omohundro, 1994). Possibly kernel PCA could be improved by
taking locality into account.

6.3.5 Kernel PCA. Kernel PCA is a nonlinear generalization of PCA in
the sense that it is performing PCA in feature spaces of arbitrarily large
(possibly infinite) dimensionality, and if we use the kernel k(x,y) = (x · y),
we recover standard PCA. Compared to the above approaches, kernel PCA
has the main advantage that no nonlinear optimization is involved; it is

3 Simply using nonlinear activation functions in the hidden layer would not suffice.
The linear activation functions already lead to the best approximation of the data (given
the number of hidden nodes), so for the nonlinearities to have an effect on the components,
the architecture needs to be changed to comprise more layers (see, e.g., Diamantaras &
Kung, 1996).

Nonlinear Component Analysis 1315

essentially linear algebra, as simple as standard PCA. In addition, we need
not specify the number of components that we want to extract in advance.
Compared to neural approaches, kernel PCA could be disadvantageous if
we need to process a very large number of observations, because this results
in a large matrix K. Compared to principal curves, kernel PCA is harder to
interpret in input space; however, at least for polynomial kernels, it has a
very clear interpretation in terms of higher-order features.

7 Conclusion

Compared to other techniques for nonlinear feature extraction, kernel PCA
has the advantages that it requires only the solution of an eigenvalue prob-
lem, not nonlinear optimization, and by the possibility of using different
kernels, it comprises a fairly general class of nonlinearities that can be used.
Clearly the last point has yet to be evaluated in practice; however, for the
support vector machine, the utility of different kernels has already been
established. Different kernels (polynomial, sigmoid, gaussian) led to fine
classification performances (Schölkopf, Burges, & Vapnik, 1995). The gen-
eral question of how to select the ideal kernel for a given task (i.e., the
appropriate feature space), however, is an open problem.

The scene has been set for using the kernel method to construct a wide va-
riety of rather general nonlinear variants of classical algorithms. It is beyond
our scope here to explore all the possibilities, including many distance-based
algorithms, in detail. Some of them are currently being investigated—for
instance, nonlinear forms of k-means clustering and kernel-based indepen-
dent component analysis (Schölkopf, Smola, & Müller, 1996).

Linear PCA is being used in numerous technical and scientific applica-
tions, including noise reduction, density estimation, image indexing and
retrieval systems, and the analysis of natural image statistics. Kernel PCA
can be applied to all domains where traditional PCA has so far been used
for feature extraction and where a nonlinear extension would make sense.

Appendix A: The Eigenvalue Problem in the Space of Expansion
Coefficients

Being symmetric, K has an orthonormal basis of eigenvectors (βi
)i with cor-

responding eigenvaluesµi; thus, for all i, we have Kβi = µiβ
i
(i = 1, . . . ,M).

To understand the relation between equations 2.11 and 2.12, we proceed as
follows. First, suppose λ,α satisfy equation 2.11. We may expand α in K’s
eigenvector basis asα =∑M

i=1 aiβ
i. Equation 2.11 then reads Mλ

∑
i aiµiβ

i =∑
i aiµ

2
i β

i, or, equivalently, for all i = 1, . . . ,M, Mλaiµi = aiµ
2
i . This in turn

means that for all i = 1, . . . ,M,

Mλ = µi or ai = 0 or µi = 0. (A.1)

1316 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

Note that the above are not exclusive ors. We next assume that λ,α satisfy
equation 2.12, to carry out a similar derivation. In that case, we find that
equation 2.12 is equivalent to Mλ

∑
i aiβ

i = ∑
i aiµiβ

i, that is, for all i =
1, . . . ,M,

Mλ = µi or ai = 0. (A.2)

Comparing equations A.1 and A.2, we see that all solutions of the latter
satisfy the former. However, they do not give its full set of solutions: given a
solution of equation 2.12, we may always add multiples of eigenvectors of K
with eigenvalue 0 and still satisfy equation 2.11, with the same eigenvalue.
This means that there exist solutions of equation 2.11 that belong to different
eigenvalues yet are not orthogonal in the space of theαk. It does not mean,
however, that the eigenvectors of C̄ in F are not orthogonal. Indeed, if α
is an eigenvector of K with eigenvalue 0, then the corresponding vector∑

i αi8(xi) is orthogonal to all vectors in the span of the 8(xj) in F, since
(8(xj) ·

∑
i αi8(xi)) = (Kα)j = 0 for all j, which means that

∑
i αi8(xi) = 0.

Thus, the above difference between the solutions of equations 2.11 and 2.12
is irrelevant, since we are interested in vectors in F rather than vectors in
the space of the expansion coefficients of equation 2.8. We thus only need
to diagonalize K to find all relevant solutions of equation 2.11.

Appendix B: Centering in High-Dimensional Space

Given any 8 and any set of observations x1, . . . , xM, the points

8̃(xi) := 8(xi)− 1
M

M∑
i=1

8(xi) (B.1)

are centered. Thus, the assumptions of section 2 now hold, and we go on
to define covariance matrix and K̃ij = (8̃(xi) · 8̃(xj)) in F. We arrive at the
already familiar eigenvalue problem,

λ̃α̃ = K̃α̃, (B.2)

with α̃ being the expansion coefficients of an eigenvector (in F) in terms of
the points in equation B.1, Ṽ = ∑M

i=1 α̃i8̃(xi). Because we do not have the
centered data (see equation B.1), we cannot compute K̃ directly; however,
we can express it in terms of its noncentered counterpart K. In the following,
we shall use Kij = (8(xi) ·8(xj)) and the notations 1ij = 1 for all i, j, (1M)ij :=
1/M, to compute K̃ij = (8̃(xi) · 8̃(xj)):

K̃ij =
(
(8(xi)− 1

M

M∑
m=1

8(xm)) · (8(xj)− 1
M

M∑
n=1

8(xn))

)
(B.3)

Nonlinear Component Analysis 1317

= Kij − 1
M

M∑
m=1

1imKmj − 1
M

M∑
n=1

Kin1nj + 1
M2

M∑
m,n=1

1imKmn1nj

= (K − 1MK − K1M + 1MK1M)ij.

We thus can compute K̃ from K and then solve the eigenvalue problem
(see equation B.2). As in equation 2.14, the solutions α̃k are normalized

by normalizing the corresponding vectors Ṽ
k

in F, which translates into
λ̃k(α̃

k · α̃k) = 1. For feature extraction, we compute projections of centered
8-images of test patterns t onto the eigenvectors of the covariance matrix
of the centered points,

(Ṽ
k · φ̃(t)) =

M∑
i=1

α̃k
i (8̃(xi) · 8̃(t)). (B.4)

Consider a set of test points t1, . . . , tL, and define two L × M matrices
by Ktest

ij = (8(ti) · 8(xj)) and K̃test
ij = ((8(ti) − 1

M

∑M
m=18(xm)) · (8(xj) −

1
M

∑M
n=18(xn))). As in equation B.3, we express K̃test in terms of Ktest, and

arrive at K̃test = Ktest−1′MK−Ktest1M+1′MK1M, where 1′M is the L×M matrix
with all entries equal to 1/M.

Appendix C: Mercer Kernels

Mercer’s theorem of functional analysis (e.g., Courant & Hilbert, 1953) gives
conditions under which we can construct the mapping 8 from the eigen-
function decomposition of k. If k is the continuous kernel of an integral
operator K : L2 → L2, (K f)(y) = ∫ k(x,y) f (x) dx, which is positive, that is,∫

f (x)k(x,y) f (y) dx dy ≥ 0 for all f ∈ L2, (C.1)

then k can be expanded into a uniformly convergent series,

k(x,y) =
∞∑

i=1

λiφi(x)φi(y), (C.2)

with λi ≥ 0. In this case,

8 : x 7→ (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .) (C.3)

is a map into F such that k acts as the given dot product, that is, (8(x)·8(y)) =
k(x,y).

Although formulated originally for the case where the integral operator
acts on functions f from L2([a, b]), Mercer’s theorem also holds if f is defined
on a space of arbitrary dimensionality, provided that it is compact (e.g.,
Dunford & Schwartz, 1963).

1318 Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller

Acknowledgments

A. S. and B. S. were supported by grants from the Studienstiftung des deuts-
chen Volkes. B. S. thanks the GMD First for hospitality during two visits.
A. S. and B. S. thank V. Vapnik for introducing them to kernel representations
of dot products during joint work on support vector machines. Thanks to
AT&T and Bell Laboratories for letting us use the USPS database and to
L. Bottou, C. Burges, and C. Cortes for parts of the soft margin hyperplane
training code. This work profited from discussions with V. Blanz, L. Bottou,
C. Burges, H. Bülthoff, P. Haffner, Y. Le Cun, S. Mika, N. Murata, P. Simard,
S. Solla, V. Vapnik, and T. Vetter. We are grateful to V. Blanz, C. Burges, and
S. Solla for reading a preliminary version of the article.

References

Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations
of the potential function method in pattern recognition learning. Automation
and Remote Control, 25, 821–837.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for
optimal margin classifiers. In D. Haussler (Ed.), Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory (pp. 144–152). Pittsburgh:
ACM Press.

Bregler, C., & Omohundro, M. (1994). Surface learning with applications to
lipreading. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in
neural information processing systems 6. San Mateo, CA: Morgan Kaufmann.

Burges, C. J. C. (1996). Simplified support vector decision rules. In L. Saitta (Ed.),
Proc. 13th Intl. Conf. on Machine Learning. San Mateo, CA: Morgan Kaufmann.

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20,
273–297.

Courant, R., & Hilbert, D. (1953). Methods of mathematical physics (Vol. 1). New
York: Interscience.

Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks. New
York: Wiley.

Dunford, N., & Schwartz, J. T. (1963). Linear operators part II: Spectral theory, self
adjoint operators in Hilbert space. New York: Wiley.

Hastie, T., & Stuetzle, W. (1989). Principal curves. JASA, 84, 502–516.
Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.
Kirby, M., & Sirovich, L. (1990). Application of the Karhunen-Loève procedure

for the characterization of human faces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(1), 103–108.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., & Jackel, L. J. (1989). Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1, 541–551.

Oja, E. (1982). A simplified neuron model as a principal component analyzer.
J. Math. Biology, 15, 267–273.

Nonlinear Component Analysis 1319

Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics,
19, 201–209.

Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a
given task. In U. M. Fayyad & R. Uthurusamy (Eds.), Proceedings, First Intl.
Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI
Press.

Schölkopf, B., Smola, A., & Müller, K.-R. (1996). Nonlinear component analysis as a
kernel eigenvalue problem (Tech. Rep. No. 44). Tübingen: Max-Planck-Institut
für biologische Kybernetik.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-
Verlag.

Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition [in Russian].
Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwo-
nenkis, Theorie der Zeichener Kenning, Akademie-Verlag, Berlin).

Received December 28, 1996; accepted September 18, 1997.

