
Expander Decomposition and Hierarchies: Exercise 1

August 17, 2025

1 Expander + Matching = Expander

Let G be a (connected) ϕ-expander. Let M be a matching where each edge (u, v) ∈ M has
at least one endpoint in V (G). Prove that G′ = G ∪M is a (ϕ/2)-expander.

1.1 Solution

� By de�nition, 2 degG is (ϕ/2)-expanding in G.

� Since degG′ ≤ degG+1V ≤ 2 degG, degG′ is (ϕ/2)-expanding in G.

� degG′ is also (ϕ/2)-expanding in G′ because G ⊆ G′. So, G′ is a (ϕ/2)-expander.

2 Dynamic expander decomposition

We will use this in Lecture 3. In Lecture 1, we show the existence of expander decomposition.
Let us extend this to the dynamic setting.

The Setting. Let G = (V,E) be a �xed graph and ϕ be a parameter. Let D ⊆ E be a set
of edges. Let A be a node weighting. Both D and A undergo incremental updates. That is,
at each time step, the adversary can add new edges into the set D. Also, the adversary can
increase the value A(v) for any vertex v.

Exercise. Show the existence of the procedure DynED(G, ϕ,A,D) that maintains an in-

cremental edge set C ⊇ D such that, at any time step t,

� A(t) is ϕ-expanding in G− C(t), and

� |C(t)| − |D(t)| ≤ ϕ|A(t)| log(n).

Hint: you do not need to use the single payment scheme that works for all time steps t.
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3 Boundary-linked expander decomposition

We will use this in Lecture 3. Let G = (V,E) be a graph, A be a node weighting, and a
parameter β ≤ 1

4ϕ log(n)
. Prove that there exists C where

� A+ β degC is ϕ-expanding in G− C, and

� |C| ≤ 2ϕ|A| log(n).

Hint: This generalizes the same statement in Lecture 1 when β = 1. The same proof works.

4 Vertex sparsi�er cuts

Flow Sparsi�ers for Node Weighting. Recall this de�nition from Lecture 1. Given a
graph G = (V,E) and a node weighting A, we say that H is a �ow vertex-sparsi�er for A in

G with quality q if, for

� If D is routable in G, then D is routable in H.

� If D is routable in H, then D is routable in G with congestion q.

Flow Sparsi�ers for Terminal Sets. For any terminal set U ⊆ V , let AU be a node
weighting where, for every vertex v,

AU(v) =

{
degG(v) if v ∈ U,

0 if v /∈ U.

We say that H is a �ow vertex-sparsi�er for U in G if H is a �ow vertex-sparsi�er for AU .

Cut Sparsi�ers for Terminal Sets. We say that H is a cut vertex-sparsi�er for U in G
with quality q if, for every pair of disjoint subsets X, Y ⊆ U ,

mincutG(X, Y ) ≤ mincutH(X, Y ) ≤ q ·mincutG(X, Y ).

That is, H q-approximately preserves all minimum cuts between every subset of terminals.

Exercise. Prove the following.

1. IfH is a �ow vertex-sparsi�er for U in G with quality q, thenH is a cut vertex-sparsi�er
for U in G with quality q.

2. Using material from Lecture 1, conclude that there exists a cut vertex-sparsi�er H for
U in G with quality 4 log n and of size |E(H)| = O(degG(U) log2 n).
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4.1 Solution

1. Let H be a �ow vertex-sparsi�er for U in G with quality q. Let X, Y ⊆ U be disjoint
subsets of terminals.

� Consider the (X, Y )-max�ow FG in G. The path decomposition of FG routes
an AU -respecting demand DG. Since FG routes DG in G with congestion 1,
DG is routable by some �ow FH in H with congestion 1 too. Since FH routes
mincutG(X, Y ) units of �ow fromX to Y inH. So mincutH(X, Y ) ≥ mincutG(X, Y ).

� Consider the (X, Y )-max�ow FH in H. For each v ∈ U , note that degH(u) ≤
q · degG(u). So the path decomposition of FH routes an qAU -respecting demand
DH . Since FH routes DH in H with congestion 1, DH is routable by some �ow
FG in G with congestion q. Since 1

q
FG routes 1

q
mincutH(X, Y ) from X to Y in G,

we have mincutG(X, Y ) ≥ 1
q
mincutH(X, Y ).

2. Lecture 1, we show a �ow vertex-sparsi�er H for AU of size |E(H)| = O(|AU | log2 n) =
O(degG(U) log2 n) and quality 4 log n. We are done by (1).

5 Non-trivial mincut preservers

Let G = (V,E) be a simple graph with n vertices. Kawarabayashi and Thorup showed that
there exists a graph G′ such that

� G′ has only Õ(n) edges.

� G′ is obtained by contracting several vertex sets S of G into single vertices vS.

� G′ preserves all non-trivial mincuts in G.

To be precise, a non-trivial mincut (U, V \U) is a cut such that |U |, |V \U | ≥ 2 and (U, V \U)
is a minimum cut. The last property says that either S ⊆ U or S ∩U = ∅ for all contracted
sets S. This is an in�uential structural result that led to many exciting development in
almost-linear time global minimum cut algorithms.

Simple Algorithm. The following simple algorithm gives such G′ with O(n log n) edges.
A better bound of O(n) is known. We need two simple subroutines: For any vertex set S,

� let trim(S) ⊆ S be obtained from S as follows: while there exists a vertex v ∈ S
where |E(v, S)| < 2 deg(v)/5, removes v from S;

� let shave(S) = {v ∈ S | |E(v, S)| > deg(v)/2 + 1}.

The algorithm is as follows:

1. Let C be a (ϕ = 100)-expander decomposition for 1⃗V in G.

2. For each component X in G− C, let X ′ = trim(X) and X ′′ = shave(X ′).

3. Let G′ be obtained from G by contracting each set X ′′ above.
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Exercise. Let us analyze this algorithm. Let (U, V \ U) be a non-trivial mincut. Let X
be a component in G− C. Prove the following:

1. min{|X ∩ U |, |X \ U |} ≤ λ/100 where λ is the size of minimum cut of G.

2. min{|X ′ ∩ U |, |X ′ \ U |} ≤ 2.

3. min{|X ′′ ∩ U |, |X ′′ \ U |} = 0.

4. G′ has O(n log(n)) edges.

5. Optional: Modify the algorithm so that G′ preserves all non-trivial cuts of size 1.9δ.
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