Expander Decomposition and Hierarchies: Exercise 1

August 17, 2025

1 Expander + Matching = Expander
Let G be a (connected) ¢-expander. Let M be a matching where each edge (u,v) € M has
at least one endpoint in V(G). Prove that G' = GU M is a (¢/2)-expander.

1.1 Solution
e By definition, 2deg is (¢/2)-expanding in G.
e Since degy < degs +1y < 2deg, dege is (¢/2)-expanding in G.

o deg. is also (¢/2)-expanding in G’ because G C G'. So, G’ is a (¢/2)-expander.

2 Dynamic expander decomposition

We will use this in Lecture 3. In Lecture 1, we show the existence of expander decomposition.
Let us extend this to the dynamic setting.

The Setting. Let G = (V, E) be a fixed graph and ¢ be a parameter. Let D C E be a set
of edges. Let A be a node weighting. Both D and A undergo incremental updates. That is,
at each time step, the adversary can add new edges into the set D. Also, the adversary can
increase the value A(v) for any vertex v.

Exercise. Show the existence of the procedure DynED(G, ¢, A, D) that maintains an in-
cremental edge set C' O D such that, at any time step t,

o AY is ¢p-expanding in G — C®, and
o [CV] —[DW] < ¢|AV|log(n).

Hint: you do not need to use the single payment scheme that works for all time steps t.

3 Boundary-linked expander decomposition

We will use this in Lecture 3. Let G = (V, E) be a graph, A be a node weighting, and a
parameter § < . Prove that there exists C' where

1
4¢ log(n)
o A+ [Bdeg. is ¢g-expanding in G — C, and
o [C1 < 26/A]log(n).

Hint: This generalizes the same statement in Lecture 1 when 5 = 1. The same proof works.

4 Vertex sparsifier cuts

Flow Sparsifiers for Node Weighting. Recall this definition from Lecture 1. Given a
graph G = (V| E) and a node weighting A, we say that H is a flow vertez-sparsifier for A in
G with quality q if, for

e If D is routable in GG, then D is routable in H.

e If D is routable in H, then D is routable in G with congestion q.

Flow Sparsifiers for Terminal Sets. For any terminal set U C V, let Ay be a node
weighting where, for every vertex v,

Ap(v) = degq(v) ifvel,
7o ifvgU.

We say that H is a flow vertex-sparsifier for U in G if H is a flow vertex-sparsifier for Ay .

Cut Sparsifiers for Terminal Sets. We say that H is a cut vertez-sparsifier for U in G
with quality ¢ if, for every pair of disjoint subsets X,Y C U,

mincutg(X,Y) < mincuty(X,Y) < ¢ - mincutg(X,Y).

That is, H g-approximately preserves all minimum cuts between every subset of terminals.

Exercise. Prove the following.

1. If H is a flow vertex-sparsifier for U in G with quality ¢, then H is a cut vertex-sparsifier
for U in G with quality q.

2. Using material from Lecture 1, conclude that there exists a cut vertex-sparsifier H for
U in G with quality 4logn and of size |E(H)| = O(degg(U)log®n).

4.1 Solution

1. Let H be a flow vertex-sparsifier for U in G with quality ¢q. Let X,Y C U be disjoint
subsets of terminals.

e Consider the (X,Y)-maxflow Fy in G. The path decomposition of Fy routes
an Ag-respecting demand Dg. Since Fy routes Dg in G with congestion 1,
D¢ is routable by some flow Fy in H with congestion 1 too. Since Fjy routes
mincutg (X, Y) units of flow from X to Y in H. So mincuty(X,Y) > mincutg(X,Y).

e Consider the (X,Y)-maxflow Fy in H. For each v € U, note that degy(u) <
q - degg(u). So the path decomposition of Fjy routes an gAy-respecting demand
Dy. Since Fy routes Dy in H with congestion 1, Dy is routable by some flow
Fg in G with congestion ¢. Since %FG routes émincutH(X, Y) from X to Y in G,
we have mincutg(X,Y) > %mincutH(X7 Y).

2. Lecture 1, we show a flow vertex-sparsifier H for Ay of size |E(H)| = O(|Ay|log® n) =
O(degs(U)log®n) and quality 4logn. We are done by (1).

5 Non-trivial mincut preservers

Let G = (V, E) be a simple graph with n vertices. Kawarabayashi and Thorup showed that
there exists a graph G’ such that

e G’ has only O(n) edges.
e (& is obtained by contracting several vertex sets S of G into single vertices vg.

e (&' preserves all non-trivial mincuts in G.

To be precise, a non-trivial mincut (U, V' \U) is a cut such that |U|, |V \U| > 2 and (U, V\U)
is a minimum cut. The last property says that either S C U or SNU = () for all contracted
sets S. This is an influential structural result that led to many exciting development in
almost-linear time global minimum cut algorithms.

Simple Algorithm. The following simple algorithm gives such G’ with O(nlogn) edges.
A better bound of O(n) is known. We need two simple subroutines: For any vertex set S,

e let TRIM(S) C S be obtained from S as follows: while there exists a vertex v € §
where |E(v, S)| < 2deg(v)/5, removes v from S;

o let SHAVE(S) ={v € S| |E(v,S)| > deg(v)/2 + 1}.
The algorithm is as follows:
1. Let C be a (¢ = 100)-expander decomposition for Iy in G.
2. For each component X in G — C, let X’ = TRIM(X) and X" = SHAVE(X').

3. Let G’ be obtained from G by contracting each set X” above.

3

Exercise. Let us analyze this algorithm. Let (U,V \ U) be a non-trivial mincut. Let X
be a component in G — C. Prove the following:

L. min{|X NU,|X \ U|} < \/100 where A is the size of minimum cut of G.
2. min{| X' NU|,|X"\U|} <2.

3. min{| X" NU|,| X"\ U|} =0.

4. G’ has O(nlog(n)) edges.

5. Optional: Modify the algorithm so that G’ preserves all non-trivial cuts of size 1.99.

	1 Expander + Matching = Expander
	1.1 Solution

	2 Dynamic expander decomposition
	3 Boundary-linked expander decomposition
	4 Vertex sparsifier cuts
	4.1 Solution

	5 Non-trivial mincut preservers

