Expander Decomposition and Hierarchies: Exercise 2

August 19, 2025

1 Online multicut

In the online multicut problem, you are given a graph G = (V, E) and an online sequence
of requests R = (s1,%1), (s2,t2),... (5|, tig)) € V x V. After seeing each request (s;,%;), you
must choose a set D; of edges to be deleted from the current graph G; so that s; and ¢; are not
connected in G, 11 = G;—D;. You must choose D; before seeing the nest request. Your online
algorithm is c-competitive if your total cut size is always at most the size of the (offline)
optimal solution (which depends on the whole sequence R). Design a polylog(n)-competitive
algorithm.

Hint: reduce to the online set cover problem, which admits polylog(n)-competitive algo-
rithms.

1.1 Solution

Since there exists a tree cut sparsifier T' with quality ¢ = O(lognloglogn) and ¢ = O(logn)
levels, we can assume that the input graph is T' by paying a ¢ factor in the competitive ratio.

On T, the online multicut problem reduces to the online set cover with frequency f = 2/,
which admits an f-competitive algorithm. The reduction is as follows. Each request (s;, ;)
corresponds to an element u;. Each tree edge e corresponds to a set s.. We set s, > u; iff
e € Ts,+, where Ty, ;. is a path from s; to ¢; in 7. The idea is that e “covers” (s;, ;) because e
would cut s; and ¢; if we choose to cut e. Since T" has depth /¢, each element u; is in at most
20 sets.

Thus, we get 2qf-competitive algorithm. Actually, the probabilistic tree cut sparsifier
works too, so we could have ¢ = O(logn).

2 Correctness of the BSE hierarchy construction

Recall the dynamic expander decomposition subroutine.Let G = (V, E) be a fixed graph and
¢ be a parameter. Let D C F be a set of edges. Let A be a node weighting. Both D and A
undergo incremental updates. The subroutine DynED(G, ¢, A, D) maintains an incremental
edge set C' O D such that, at any time,

e Ais ¢-expanding in G — C, and

o [C]—|D] < ¢|A|log(n).

In Lecture 3, we describe the following algorithm for constructing a BSE hierarchy of a graph
G=(V,E):

e Initialize:
— Cy« E, Ci«(Qforalli>1

1 L logm
- ¢ < 16logn and £ := log(1/4¢logn) +1

e For 0 <7 </, maintain until there is no update

Ci-i—l <]:)yIlE]:)(G7 ¢, Az = degci, D; .= Ci+2)

e Return F; = C; — C; 1 forall i < /¢

Our goal is to show that Cy 1 = (), which proves the correctness of the whole algorithms (See
the slides).

Lemma. For each i, |C;| < (2q)'m where ¢ = 2¢log(n) < 1/8. In particular, Cyyq = 0.
In this exercise, we will guide you to prove this lemma.

1. For 0 <1 </, prove that
Cit1| = [Cita| < q|Cil.

2. Prove by induction that N
1Cip1] < 2" 'm + 2|Cipa].

3. Prove by induction again that

Cil < (29)'m.

2.1 Solution
L. DynED(G, ¢, A; := deg.,, D; := Cj;2) guarantees that

|Cig1] = [Ciga| < plog(n)] Al
= 2¢log(n)|C;|
= Q|Cz‘|

by definition of q.
2. For the base case i = 0, we have

|C1| = |Ca| < q|Co| = gm.

For the inductive step ¢ < £, we have

Cita] < q|Ci] + |Ciyal
< q(27g'm + 2[Ciga) + |Cial
= 2"7q" m + 2q|Cia | + | Cio
Qiflqi+lm + |Ci+2|
1—2¢q
< 2gm £ 2/l

|Cita]| < g<1/4

3. The trick is to do induction backward. For the base case i = £ + 1, we have Cyppq = ()
because
Coal < 24" m +2|Cops| < 1

= log(ll/of—qﬁnfom and Cy, o = () by construction. So

because £ > log; o, m
[Cera] < (2¢)'m
as desired. For an inductive step ¢ > 0, we have

|Ci+1| S 2iqi+1m + 2(2q)2+2m
— (2q)i+lm

because ¢ < 1/8.

3 Flow shortcuts

We say that a flow F' G has hopbound A if every flow path in F' contains at most h edges.
Let G = (V, E) be a graph.

Definition 3.1. An edge set E’ is a flow shortcut of G with k congestion and h hopbound
if, for any degg-respecting demand D,

e If D is routable in G, then D is routable in G’ := G U E’ with hopbound h.
e If D is routable in G’, then D is routable in G with congestion k.
We call G’ a shortcut graph. We allow E’ to contain vertices not in G.

Flow shortcuts with low congestion and hopbound are desirable. They allow us to as-
sume that the target flow has small hopbound, and finding flow with small hopbound is
usually easier. There are many recent flow algorithms based on this. This concept is closely
related to Cohen’s hopset which has the same purpose for distance-based problems, instead
of congestion-based problems.

Exercise. We will construct flow shortcuts from expanded hierarchies.

1. Let Ey,..., Ey, be a ¢-boundary-separator-expanding hierarchy of GG. For each ¢ and
each level-i cluster H in G — E-;, let E'y be a star with a Steiner root vertex ry and
leaf set V' (H). For each v € V(H), the set the capacity cap(ry,v) = degp_ (v). Set
E' + Uy Egn. Prove that E’ is a flow shortcut of G with congestion k = O(¢/$) and
hopbound h = O(¢). Conclude that every graph admits a flow shortcut with congestion

log?(n) and hopbound O(logn).

2. Let FEy,..., Ey be a ¢-separator-expanding hierarchy of G. For each ¢ and each level-;
cluster H in G— E-;, let Ey be a star with a Steiner root vertex ry and leaf set V (H).
For each v € V(H), the set the capacity cap(ry,v) = degy, (v). Set E' < Jy En.
Prove that E’ is a flow shortcut of G with congestion k = O(¢/¢) and hopbound
h = O(2%).

3. Read Problem 4. Prove the same thing when Ey,..., E, form a weak ¢-separator-
expanding hierarchy.

4. Optional: A flow shortcut can be defined for vertex-capacitated graphs too. Let us
call that a vertex-flow shortcut. By (2) and generalizing the definition ¢-separator-
expanding hierarchy to vertex-capacitated graphs, conclude that every graph admits a
vertex-flow shortcut with congestion and hopbound (logn)0(Viegn),

It is open if every graph admits a vertex-flow shortcut with congestion and hopbound
polylogn. I would be very interested to see this.

4 A bottom-up construction of (weak) separator-expanding
hierarchies

Definition 4.1. Let H be a graph. We say that demand D is constrained by components of
H if, for each (u,v), D(u,v) > 0 implies that u, v are in the same connected component of
H. We also say that D is H-component-constrained.

That is, we can have only set a demand in D between connected pairs of vertices of H.

Definition 4.2. We say that a node weighting A is H-component-constrained ¢-expanding
in G if every H-component-constrained demand routable in G with congestion 1/¢.

Let H C G. Observe that if A is ¢-expanding in H, then A is H-component-constrained
¢-expanding in GG. That is, the former is a stronger condition. For intuition, the latter only
requires ability to route between vertices in the same components of H, but we could use
edges in the supergraph G O H to route.

Definition 4.3. We say that a partition Ey, ..., F, of E forms a weak ¢-separator-expanding
hierarchy if, for each i, E; is (G — E;)-component-constrained ¢-expanding in G.

Observe that a ¢-separator-expanding hierarchy is also a weak ¢-separator-expanding
hierarchy. There is an extremely simple algorithm for building a weak ¢-separator-expanding
hierarchy by making O(logn) calls to expander decomposition:

4

oC’O<—Eand¢>§ L

2logn
e While C; # 0,
— Cjy1 <—¢-expander decomposition of A; := deg .
—i<1+1

e Return E; = C; \ C5; for each i.

Exercise. Prove that {Fjy,..., E,} forms a weak ¢-separator-expanding hierarchy with

logm
14 S m levels.

4.1 Solution

We know that C; is ¢-expanding in G — Ci44. So, C; is (G — Cj41)-component-constrained
¢-expanding in G. Since E; C C; and E-; = Cs; O Ciyq, E; is (G — E-;)-component-
constrained ¢-expanding in G.

	1 Online multicut
	1.1 Solution

	2 Correctness of the BSE hierarchy construction
	2.1 Solution

	3 Flow shortcuts
	4 A bottom-up construction of (weak) separator-expanding hierarchies
	4.1 Solution

