
Expander Decomposition and Hierarchies: Exercise 2

August 19, 2025

1 Online multicut

In the online multicut problem, you are given a graph G = (V,E) and an online sequence
of requests R = (s1, t1), (s2, t2), . . . (s|R|, t|R|) ∈ V × V . After seeing each request (si, ti), you
must choose a set Di of edges to be deleted from the current graph Gi so that si and ti are not
connected in Gi+1 = Gi−Di. You must choose Di before seeing the nest request. Your online
algorithm is c-competitive if your total cut size is always at most the size of the (o�ine)
optimal solution (which depends on the whole sequence R). Design a polylog(n)-competitive
algorithm.

Hint : reduce to the online set cover problem, which admits polylog(n)-competitive algo-
rithms.

1.1 Solution

Since there exists a tree cut sparsi�er T with quality q = O(log n log log n) and ℓ = O(log n)
levels, we can assume that the input graph is T by paying a q factor in the competitive ratio.

On T , the online multicut problem reduces to the online set cover with frequency f = 2ℓ,
which admits an f -competitive algorithm. The reduction is as follows. Each request (si, ti)
corresponds to an element ui. Each tree edge e corresponds to a set se. We set se ∋ ui i�
e ∈ Tsi,ti where Tsi,ti is a path from si to ti in T . The idea is that e �covers� (si, ti) because e
would cut si and ti if we choose to cut e. Since T has depth ℓ, each element ui is in at most
2ℓ sets.

Thus, we get 2qℓ-competitive algorithm. Actually, the probabilistic tree cut sparsi�er
works too, so we could have q = O(log n).

2 Correctness of the BSE hierarchy construction

Recall the dynamic expander decomposition subroutine.Let G = (V,E) be a �xed graph and
ϕ be a parameter. Let D ⊆ E be a set of edges. Let A be a node weighting. Both D and A
undergo incremental updates. The subroutine DynED(G, ϕ,A,D) maintains an incremental

edge set C ⊇ D such that, at any time,

� A is ϕ-expanding in G− C, and

1

� |C| − |D| ≤ ϕ|A| log(n).

In Lecture 3, we describe the following algorithm for constructing a BSE hierarchy of a graph
G = (V,E):

� Initialize:

� C0 ← E, Ci ← ∅ for all i ≥ 1

� ϕ ≤ 1
16 logn

and ℓ := logm
log(1/4ϕ logn)

+ 1

� For 0 ≤ i ≤ ℓ, maintain until there is no update

Ci+1 ← DynED(G, ϕ,Ai := degCi
, Di := Ci+2)

� Return Ei = Ci − Ci+1 for all i ≤ ℓ

Our goal is to show that Cℓ+1 = ∅, which proves the correctness of the whole algorithms (See
the slides).

Lemma. For each i, |Ci| ≤ (2q)im where q = 2ϕ log(n) ≤ 1/8. In particular, Cℓ+1 = ∅.

In this exercise, we will guide you to prove this lemma.

1. For 0 ≤ i ≤ ℓ, prove that
|Ci+1| − |Ci+2| ≤ q|Ci|.

2. Prove by induction that
|Ci+1| ≤ 2iqi+1m+ 2|Ci+2|.

3. Prove by induction again that
|Ci| ≤ (2q)im.

2.1 Solution

1. DynED(G, ϕ,Ai := degCi
, Di := Ci+2) guarantees that

|Ci+1| − |Ci+2| ≤ ϕ log(n)|Ai|
= 2ϕ log(n)|Ci|
= q|Ci|

by de�nition of q.

2. For the base case i = 0, we have

|C1| − |C2| ≤ q|C0| = qm.

2

For the inductive step i ≤ ℓ, we have

|Ci+1| ≤ q|Ci|+ |Ci+2|
≤ q(2i−1qim+ 2|Ci+1|) + |Ci+2|
= 2i−1qi+1m+ 2q|Ci+1|+ |Ci+2|

|Ci+1| ≤
2i−1qi+1m+ |Ci+2|

1− 2q
q ≤ 1/4

≤ 2iqi+1m+ 2|Ci+2|

3. The trick is to do induction backward. For the base case i = ℓ + 1, we have Cℓ+1 = ∅
because

|Cℓ+1| ≤ 2ℓqℓ+1m+ 2|Cℓ+2| < 1

because ℓ > log1/2q m = logm
log(1/4ϕ logn)

and Cℓ+2 = ∅ by construction. So

|Cℓ+1| ≤ (2q)ℓ+1m

as desired. For an inductive step i ≥ 0, we have

|Ci+1| ≤ 2iqi+1m+ 2(2q)i+2m

= (2q)i+1m

because q ≤ 1/8.

3 Flow shortcuts

We say that a �ow F G has hopbound h if every �ow path in F contains at most h edges.
Let G = (V,E) be a graph.

De�nition 3.1. An edge set E ′ is a �ow shortcut of G with κ congestion and h hopbound

if, for any degG-respecting demand D,

� If D is routable in G, then D is routable in G′ := G ∪ E ′ with hopbound h.

� If D is routable in G′, then D is routable in G with congestion κ.

We call G′ a shortcut graph. We allow E ′ to contain vertices not in G.

Flow shortcuts with low congestion and hopbound are desirable. They allow us to as-
sume that the target �ow has small hopbound, and �nding �ow with small hopbound is
usually easier. There are many recent �ow algorithms based on this. This concept is closely
related to Cohen's hopset which has the same purpose for distance-based problems, instead
of congestion-based problems.

Exercise. We will construct �ow shortcuts from expanded hierarchies.

3

1. Let E0, . . . , Eℓ be a ϕ-boundary-separator-expanding hierarchy of G. For each i and
each level-i cluster H in G− E>i, let EH be a star with a Steiner root vertex rH and
leaf set V (H). For each v ∈ V (H), the set the capacity cap(rH , v) = degE≥i

(v). Set

E ′ ←
⋃

H EH . Prove that E
′ is a �ow shortcut of G with congestion κ = O(ℓ/ϕ) and

hopbound h = O(ℓ). Conclude that every graph admits a �ow shortcut with congestion
log2(n) and hopbound O(log n).

2. Let E0, . . . , Eℓ be a ϕ-separator-expanding hierarchy of G. For each i and each level-i
cluster H in G−E>i, let EH be a star with a Steiner root vertex rH and leaf set V (H).
For each v ∈ V (H), the set the capacity cap(rH , v) = degEi

(v). Set E ′ ←
⋃

H EH .
Prove that E ′ is a �ow shortcut of G with congestion κ = O(ℓ/ϕ) and hopbound
h = O(2ℓ).

3. Read Problem 4. Prove the same thing when E0, . . . , Eℓ form a weak ϕ-separator-
expanding hierarchy.

4. Optional: A �ow shortcut can be de�ned for vertex-capacitated graphs too. Let us
call that a vertex-�ow shortcut. By (2) and generalizing the de�nition ϕ-separator-
expanding hierarchy to vertex-capacitated graphs, conclude that every graph admits a
vertex-�ow shortcut with congestion and hopbound (log n)O(

√
logn).

It is open if every graph admits a vertex-�ow shortcut with congestion and hopbound
poly log n. I would be very interested to see this.

4 A bottom-up construction of (weak) separator-expanding

hierarchies

De�nition 4.1. Let H be a graph. We say that demand D is constrained by components of

H if, for each (u, v), D(u, v) > 0 implies that u, v are in the same connected component of
H. We also say that D is H-component-constrained.

That is, we can have only set a demand in D between connected pairs of vertices of H.

De�nition 4.2. We say that a node weighting A is H-component-constrained ϕ-expanding
in G if every H-component-constrained demand routable in G with congestion 1/ϕ.

Let H ⊆ G. Observe that if A is ϕ-expanding in H, then A is H-component-constrained
ϕ-expanding in G. That is, the former is a stronger condition. For intuition, the latter only
requires ability to route between vertices in the same components of H, but we could use
edges in the supergraph G ⊇ H to route.

De�nition 4.3. We say that a partition E0, . . . , Eℓ of E forms a weak ϕ-separator-expanding
hierarchy if, for each i, Ei is (G− E>i)-component-constrained ϕ-expanding in G.

Observe that a ϕ-separator-expanding hierarchy is also a weak ϕ-separator-expanding
hierarchy. There is an extremely simple algorithm for building a weak ϕ-separator-expanding
hierarchy by making O(log n) calls to expander decomposition:

4

� C0 ← E and ϕ ≤ 1
2 logn

� While Ci ̸= 0,

� Ci+1 ←ϕ-expander decomposition of Ai := degCi
.

� i← i+ 1

� Return Ei = Ci \ C>i for each i.

Exercise. Prove that {E0, . . . , Eℓ} forms a weak ϕ-separator-expanding hierarchy with
ℓ ≤ logm

log(1/ϕ logn)
levels.

4.1 Solution

We know that Ci is ϕ-expanding in G − Ci+1. So, Ci is (G − Ci+1)-component-constrained
ϕ-expanding in G. Since Ei ⊆ Ci and E>i = C>i ⊇ Ci+1, Ei is (G − E>i)-component-
constrained ϕ-expanding in G.

5

	1 Online multicut
	1.1 Solution

	2 Correctness of the BSE hierarchy construction
	2.1 Solution

	3 Flow shortcuts
	4 A bottom-up construction of (weak) separator-expanding hierarchies
	4.1 Solution

