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1 Spanners: definition

Let G be a graph with n vertices and m edges, and fix a stretch parameter α ≥ 1. A α-spanner
of G is a spanning subgraph H of G (i.e., a graph H such that V (H) = V (G)) that satisfies:

dH(s, t) ≤ α · dG(s, t) ∀s, t ∈ V (G)

It is possible to generalize the above definition by including an additive term. For α ≥ 1 and
β ≥ 0 and (α, β)-spanner of G is a spanning subgraph H of G such that:

dH(s, t) ≤ α · dG(s, t) + β ∀s, t ∈ V (G), (1)

That is a α-spanner is a (α, 0)-spanner. Spanner for which β = 0 are called purely multiplica-
tive spanners. Similarly, it is possible to have purely additive spanners, i.e., spanners for which
α = 1. The pair (α, β) is called distortion.

Spanners having distortion (1 + ε, 0), for any arbitrarily small constant ε > 0, also exist and
they are called nearly-additive.

In the following we will only focus on purely additive and purely multiplicative spanners with
α, β = O(1). We will refer to the number of edges |E(H)| of a spanner H as its size.

Our goal is to find spanners with small size and low stretch/distortion.

2 Multiplicative Spanners: The Greedy Spanner

A simple algorithm to construct a sparse α-spanner for α = 1, 3, 5, . . . was introduced in
[Althöfer et al., 1993]. For the special case of unweighted graphs, the pseudocode of the al-
gorithm in [Althöfer et al., 1993] is equivalent to the one shown in Algorithm 1, where we write
α = 2k − 1. The algorithm incrementally constructs the sought spanner H: initially H contains
no edges at all; then, the edges of G are examined one by one. When an edge (u, v) is considered
the algorithm tests whether there already exists an alternative path between u and v in H that
uses at most 2k − 1 edges. If this is the case, then the edge is discarded and will not be part of
H. Otherwise, (u, v) is added to H and the next edge is considered. When all edges of G are
exhausted, the current graph H is returned.

Notice that Algorithm 1 only explicitly check the distances between the pairs s, t for which
(s, t) ∈ E(G). One might then wonder whether this is sufficient to ensure that Equation (1) will
be satisfied for all pairs s, t ∈ V (G). The following lemma shows that this is indeed the case.
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Lemma 1. H is a (2k − 1)-spanner of G.

Proof. Fix any two vertices s, t ∈ V (G) and consider an arbitrary shortest path π = 〈s =
u0, u1, . . . , u` = t〉 from s to t in G. We will construct a path π′ in H by replacing each edge
(ui−1, ui) of π that is not in H with a suitable detour πi. More precisely, if (ui−1, ui) ∈ E(H)
we let πi be the path consisting of the sole edge (ui−1, ui). Otherwise, if (ui−1, ui) 6∈ E(H),
then when the edge (ui−1, ui) was considered by the algorithm, the condition dH(u, v) > (2k −
1)dG(u, v) was not satisfied, i.e., H contained a path between ui−1 and ui of length at most
2k − 1. We let πi be such a path. See Figure 1 for a qualitative example.

We define our path π′ as the concatenation of all the paths πi, i.e.,

π′ = π1 ◦ π2 ◦ · · · ◦ π`

By construction π′ is a (non necessarily simple) path between u and v that is entirely contained
in H. Moreover, we have:

dH(s, t) ≤ |π′| ≤
∑

e∈E(π)

(2k − 1) ≤ (2k − 1) · |π| = (2k − 1) · dG(u, v).

But what about the size of H? After all we were looking for a sparse spanner. We can
actually derive an upper bound to the number of edges in H by using tools from extremal graph
theory [Bollobas, 2004]. We start with a definition:

Definition 1 (Girth). The girth of a graph is the length of its shortest cycle. If the graph is
acyclic, its girth is defined to be +∞.

The key property that we are going to use is that if a graph has not small cycles then it cannot
be too dense, or equivalently, if the graph’s density is too high then there always exist a short
cycle. Notice that, if we are aiming to prove a bound of O(n1+x) to |E(H)|, then we can always
iteratively remove all the vertices of degree smaller than nx from H, as their contribution to
E(H) can be at most n1+x = O(n1+x). We can therefore focus on dense subgraphs of minimum
degree κ = nx. The following definition captures this notion.

Definition 2. A κ-core of a graph G is a maximal connected subgraph in which each vertex has
degree at least κ.

Interestingly, the above observations provide with an algorithm to find all the κ-cores of a
graph H: the κ-cores of H are all and only the connected components of the graph obtained by
iteratively removing the vertices of degree at most κ from H.

Lemma 2. Let H be a graph with n vertices and m edges. If H has girth at least g = 2k + 1,
then m ≤ n1+ 1

k .

Algorithm 1: Greedy-Spanner(G, k): returns a (2k − 1)-spanner of G

1 H ← (V (G), ∅);
2 foreach (u, v) ∈ E(G) do
3 if dH(u, v) > (2k − 1) then
4 E(H)← E(H) ∪ {(u, v)};

5 return H
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Proof. We start by computing a (1 + n
1
k )-core H of H. This can be done by using the greedy

algorithm discussed above.
It follows that the edges in E(H) \ E(H) are at most n1+

1
k , since each removed vertex had

degree at most n
1
k at the time of deletion. We now show that H must be empty.

Suppose towards a contradiction that there exists a vertex r ∈ V (H) and let T be the graph
obtained as the union of all the shortest paths from r that have length at most k. Since the
girth of H (and hence of H) is at least 2k+ 1, T must be acyclic, i.e., T is a tree rooted in r (see
Figure 3).

The root r of T has at least 1 + n
1
k children, while every other vertex on levels 1, . . . , k − 1

of T has at least n
1
k children. It follows that the number of leaves of T is at least:(

1 + n
1
k

)
·
(
n

1
k

)k−1
= n

k−1
k + n > n,

which is clearly a contradiction since |V (T )| ≤ |V (H)| ≤ |V (H)| ≤ n.

The above lemma reduces the problem of finding an upper bound |E(H)| H to that of finding
a lower bound to the girth of H. The test of Algorithm 1 ensures that no edge completing cycle
of length smaller to 2k can ever be added to H, as the following lemma shows.

Lemma 3. The girth of H is at least 2k + 1.

Proof. Suppose towards a contradiction that H contains a cycle C of length at most 2k. Let
(u, v) be the last edge of C that was added to H. When (u, v) was considered all the other edges
of C were already in H, implying dH(u, v) ≤ 2k− 1 (See Figure 4). It follows that the condition
dH(u, v) > (2k − 1)dG(u, v) = 2k − 1 of is not satisfied, i.e., (u, v) cannot belong to H.

Combining Lemma 1, Lemma 2, and Lemma 3, we immediately obtain:

Theorem 1. H is a (2k − 1)-spanner of G of size at most n1+
1
k .

The above construction and analysis easily extends to non-negatively weighted graphs. The
only modification needed in Algorithm 1 consists of replacing the test condition dH(u, v) >
(2k − 1) with dH(u, v) > (2k − 1)w(u, v), where w(u, v) denotes the weight of edge (u, v) in G.

2.1 Can we do better?

A natural question is whether we can improve over the trade-off between size and stretch achieved
by the above simple algorithm. Perhaps surprisingly, it is possible to show that the greedy
spanner is asymptotically optimal unless the following conjecture fails.

u`−1 u` = ts = u0

π2

π3

π4 π5

u2 u3 u4 u5u1

π1 π`

Figure 1: A qualitative representation of the path π′ between u and v in H constructed in the
proof of Lemma 1. Solid lines represent edges and paths in H. Dashed edges belong to G but
not to H. For each dashed edge (ui−1, ui) the corresponding detour πi is shown in red. The path
π′ consists of all the bold edges.
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Figure 2: Example of the greedy algorithm for computing a 3-core of graph. Vertices with degree
smaller than 3 are shown in white and are iteratively removed (from left to right). The rightmost
graph is the 3 core.

Conjecture 1 (Erdős Girth Conjecture [Erdős, 1964]). For every g ∈ [2k + 1, 2k + 2], k ≥ 1,

there exists a graph with girth g and Ω(n1+
1
k ) edges.

Example 1. The complete graph Kn has girth 3 (k = 1) and n(n−1)
2 = Θ(n2) edges.

Example 2. The complete bipartite graph Kn/2,n/2 has girth 4 (k = 2) and n2

4 = Θ(n2) edges.

So far, the Erdős Girth Conjecture has been proven for for k = 1, 2, 3, 5 [Wenger, 1991]. An
interesting consequence of the existence of such graph is that they cannot be further sparsified:

Observation 1. Let G be a graph as in Conjecture 1. The only (2k − 1)-spanner of G is G
itself.

Proof. Let H be a (2k − 1)-spanner of G and suppose that H 6= G. Then, there exist an edge
(u, v) ∈ E(G) \ E(H). Since the girth of G (and hence of H) is at least 2k + 1, we have that
dH(u, v) ≥ 2k, yielding the contradiction: 2k ≤ dH(u, ) ≤ (2k − 1)dG(u, v) = 2k − 1.

Corollary 1. The greedy spanner is optimal unless the Erdős Girth Conjecture fails.

k

r

n
1
k

1 + n
1
k

︸ ︷︷ ︸
> n leaves

T

Figure 3: The tree T used in the proof of Lemma 2. The existence of any additional edge
incident to a non-leaf vertex (e.g., the dashed red edges) would create a cycle of length at most

2k, contradiction g ≥ 2k+ 1. Each of the 1 +n
1
k gray subtrees has at least n

k−1
k leaves, implying

that T has more than n leaves.
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≤ 2k − 1
C

1

u v

Figure 4: No cycle C of length at most 2k can exist in H, since the last edge (u, v) to be added
to H would not satisfy dH(u, v) > (2k − 1)dG(u, v) = 2k − 1.
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3 Additive Spanners

A simple (1, 2)-spanner

In this section we will first describe a simple randomized algorithm that allows us to compute
a spanner H with Õ(n

3
2 ) edges and that preserves the distance in G up to an additive error of

2. We will then derive a deterministic version of the algorithm that also improves the size to
O(n

3
2 ), which will turn out to be asymptotically tight. The presented construction is based on

the work of [Aingworth et al., 1999].

A randomized algorithm

We will say that a vertex v of G is heavy if its degree δ(v) is at least
√
n. Otherwise, we say

that v is light. Similarly, we say that an edge is heavy if both its endpoints are heavy, and light
otherwise. The idea behind the algorithm is the following: even if all the light edges are added
to the spanner H, their combined contribution to |E(H)| will be at most n

3
2 . We therefore only

need to approximate the distances between pair of vertices that are connected by shortest paths
traversing one or more heavy vertices. To this aim we will add all the shortest paths emanating
from a certain set random S of source vertices. If the neighborhood N(v) of an heavy vertex
v happens to contain a source in x ∈ S, then all the shortest paths emanating from v can be
approximated by the first going from v to x and then following the shortest path from x. The
pseudocode is shown in Algorithm 2. See also Figure 5 for a qualitative representation of the
resulting spanner.

Algorithm 2: randomized (1, 2)-spanner(G)

1 H ← (V (G), ∅);
2 Create S ⊆ V (G) by independently adding each vertex in V (G) to S with probability

p = 3 lnn√
n

;

3 foreach v ∈ S do
4 Add a BFS tree of G rooted in v to H;

5 E(H)← E(H) ∪ {e ∈ E(G) : e is light}
6 return H

Lemma 4. |E(H)| = O(n
3
2 lnn) with probability at least 1− n−2.

Proof. We start by proving an upper bound to |S|. Notice that |S| is a binomial random variable
with parameters n and p = 3 lnn√

n
. Therefore, the expected number of vertices in S is E[|S|] =

n · p = 3
√
n lnn and by using a Chernoff bound with ε = 1, we obtain:

Pr(|S| ≥ 6
√
n lnn) = Pr(|S| ≥ (1 + ε)E[|S|]) ≤ e− 1

3 εE[|S|] = e−
1
3 3
√
n lnn ≤ n−

√
n ≤ n−2.

That is, with probability at least 1 − n−2, |S| < 6
√
n lnn. Since each vertex in S causes the

addition of at most n− 1 edges, their total contribution to |E(H)| is at most 6n1+
3
2 lnn.

To bound the number of light edges added to H, notice that each of those edges as at least
one light endpoint. Since each light vertex has degree less than

√
n, the total number of light

edges can be at most n
3
2 .
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Figure 5: Qualitative (and partial) example of the spanner returned by Algorithm 2. Black (resp.
white) vertices are heavy (resp. light). Vertices whose outline is highlighted in red belong to the
randomly selected set of sources S. Solid edges belong to both G and H, while dashed edges
belong to E(G) \ E(H). Edges highlighted in red are guaranteed to belong to a BFS rooted in
some vertex in S. For the sake of readability, the BFS trees themselves are not depicted.

Lemma 5. With probability at least 1− n−2, each heavy vertex has at least one neighbor in S.

Proof. Let v be a heavy vertex. Since δG(v) ≥
√
n, the probability that NG(v) contains no vertex

in S is at most:

Pr(NG(v) ∩ S = ∅) ≤ (1− p)δG(v) ≤
(

1− 3 lnn√
n

)√n
=

(
1− 1

x

)x·3 lnn

≤ e−3 lnn = n−3,

where we used the substitution x = 1
p =

√
n

3 lnn and the inequality (1− 1
x )x ≤ 1

x for x ≥ 1.

By using the union bound on the (at most n) heavy vertices, the probability that at least
one heavy vertex has no neighbor in S is at most:∑

v : v is heavy

Pr(NG(v) ∩ S = ∅) ≤ n · n−3 = n−2.

Lemma 6. With probability at least 1− n−2, H is a (1, 2)-spanner of G.

Proof. Suppose that the condition of Lemma 5 holds (this happens with probability at least
1− n−2).

Let s, t ∈ V (G) and consider a shortest path π between s and t in G.
If π contains no heavy vertex, then all the edges in π belong to H and we are done. Otherwise,

let u ∈ V (G) be the first heavy vertex encountered when π is traversed from s to t.
It follows that the subpath of π from s to u is entirely contained in H (as all of its vertices

except for u are light), therefore dH(s, u) = dG(s, u). Since u is a heavy vertex, it has at least one
neighbor v ∈ S. Using the fact that H contains a BFS tree from v, we know that (u, v) ∈ E(H)
and that dH(v, t) = dG(v, t) ≤ 1 + dG(u, v), where we used the triangle inequality (see also
Figure 6). We can then write:

dH(s, t) = dH(s, u) + dH(u, t)

≤ dG(s, u) + 1 + dH(v, t)

≤ dG(s, u) + 1 + dG(u, t) + 1

= dG(s, t) + 2.
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s tu

v ∈ S ≤ dG(u, t) + 1

Figure 6: Graphical representation of the proof of Lemma 6. The same graphical conventions of
Figure 5 are used. In addition, a path in H using at most dG(s, t) + 2 edges is shown in bold.

The following theorem follows directly from the combination of Lemma 4 and Lemma 6.

Theorem 2. H is a (1, 2)-spanner of G of size O(n
3
2 lnn).

A deterministic algorithm

We now show how the above randomized algorithm can be be transformed in a deterministic one.
To this aim we will drop the distinction between heavy and light nodes and edges and instead
distinguish between marked and unmarked nodes. A node will be marked if it has at least one
neighbor in the set S and unmarked otherwise. The algorithm starts with an empty set S and
iteratively adds to S one vertex v that is adjacent to at least

√
n unmarked vertices. Then, it

proceeds similarly to Algorithm 2. The pseudocode is shown in Algorithm 3, where δ̄(v) denotes
the number of neighbors of v that are unmarked.

Algorithm 3: deterministic (1, 2)-spanner(G)

1 H ← (V (G), ∅);
2 S ← ∅;
3 while ∃v ∈ V (G) : δ̄(v) >

√
n do

4 S ← S ∪ {v};
5 Mark all neighbors of v;

6 foreach v ∈ S do
7 Add a BFS tree of G rooted in v to H;

8 E(H)← E(H) ∪ {e ∈ E(G) : e is unmarked}
9 return H

Lemma 7. |S| ≤
√
n.

Proof. Each time a vertex v is added to S, at least δ̄(v) ≥
√
n previously unmarked vertices are

marked. Since initially all vertices are unmarked, we must have |S|
√
n ≤ n, i.e., |S| ≤

√
n.

Lemma 8. |E(H)| = O(n
3
2 ).

Proof. Each vertex in S causes the addition of at most n − 1 edges. Using Lemma 7, we have:
|S| · (n− 1) ≤ n

√
n.

Each unmarked edge (u, v) is incident to at least one unmarked node, say v w.l.o.g. Then (u, v)
contributes 1 to δ̄(v). This implies total number of unmarked edges is at most

∑
v∈V (G) δ̄(v) ≤

n
√
n.
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Lemma 9. H is a (1, 2)-spanner of G.

Proof. Let s, t ∈ V (G) and consider a shortest path π between s and t in G.
If π contains no marked vertex, then all the edges in π are also unmarked and belong to H.

Otherwise, let u ∈ V (G) be the first marked vertex encountered when π is traversed from s to t.
Since u is marked, there must be an edge (u, v) ∈ E(G) with v ∈ S. Moreover, since H

contains a BFS tree from each vertex in S, the edge (u, v) is also in E(H). The rest of the proof
is now identical to that of Lemma 6.

Theorem 3. H is a (1, 2)-spanner of G of size O(n
3
2 ).

Proof. The claim follows directly from the combination of Lemma 7 and Lemma 9.

Observation 2. Assuming Erdős Girth Conjecture, a (1, 2k)-spanner or (1, 2k + 1)-spanner

must contain at least Ω(n1+
1

k+1 ) edges in the worst case.

Actually, for k = O(1), [Woodruff, 2006] showed that the above lower bound holds uncondi-
tionally, i.e., regardless of the Erdős Girth Conjecture. By substituting k = 1, we then obtain
an unconditional lower bound of Ω(n

3
2 ) on the worst-case size of β = 2k = 2-additive spanners.

Corollary 2. The size of H is asymptotically optimal.

4 Other Additive Spanners

In addition to the (1, 2)-spanner of [Aingworth et al., 1999] discussed above, two other additive
spanners are currently known, namely the (1, 4)-spanner of [Chechik, 2013] which has a size of

Õ(n
7
5 ), and the (1, 6)-spanner of [Baswana et al., 2010] which has a size of O(n

4
3 ).

One might expect that sparser additive spanners could be obtained by worsening their ad-
ditive stretch. Quite surprisingly, that turns out not to be the case: Abboud and Bodwin
showed that there exists no (1, β)-spanner H with β = no(1) such that |E(H)| = O(n

4
3−o(1))

[Abboud and Bodwin, 2017].
The following table summarizes the spanners discussed in these notes.

Stretch Upper Bound Lower Bound

2k − 1 O(n1+
1
k ) [Althöfer et al., 1993] Ω(n1+

1
k ) (conditional)

2k (dominated) Ω(n1+
1
k ) (conditional)

(1, 2) O(n
3
2 ) [Aingworth et al., 1999] Ω(n

3
2 )

(1, 3) (dominated) Ω(n
3
2 )

(1, 4) Õ(n
7
5 ) [Chechik, 2013] Ω(n

4
3 )

(1, 5) ??? Ω(n
4
3 )

(1, 6) O(n
4
3 ) [Baswana et al., 2010] Ω(n

4
3−ε), for any constant ε > 0

(1, k), 6 < k = no(1) (dominated) Ω(n
4
3−ε) [Abboud and Bodwin, 2017]
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