

Paper Number P0329R4

Date 2017-07-12

Authors Tim Shen <​timshen@google.com​>
Richard Smith <​richard@metafoo.co.uk​>

Audience CWG

P0329R4: Designated Initialization
Wording

This is a formal wording for the designated initialization proposal ​P0329R0​.

Changes compared to ​P0329R3​:

● Extend example in [over.ics.list]
● Add Annex C section describing differences from ISO C.

Wording
Change 11.6 [dcl.init]p1 as follows
 ​braced-init-list:
 { initializer-list ,​opt​ }
 ​ ​{ designated-initializer-list ,​opt​ }
 { }
 ​ ​designated-initializer-list​:
 ​ ​designated-initializer-clause
 ​designated-initializer-list ​, ​ designated-initializer-clause
 ​designated-initializer-clause:
 ​designator brace-or-equal-initializer
 ​designator:
 ​. ​ identifier

Add a new paragraph as 11.6 [dcl.init]p20:

The same ​identifier​ shall not appear in multiple ​designator​s of a ​designated-initializer-list​.

Change in 11.6.4 [dcl.init.list]p1:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0329r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0329r0.pdf
mailto:richard@metafoo.co.uk
mailto:timshen@google.com

List-initialization​ is initialization of an object or reference from a ​braced-init-list​. Such an
initializer is called an ​initializer list​, and the comma-separated ​initializer-clause​s of the
initializer-list​ ​list​ ​or ​designated-initializer-clause​s of the ​designated-initializer-list​ are called the
elements​ of the initializer list. [...]

Add a new bullet at the start of 11.6.4 [dcl.init.list]p3:

If the ​braced-init-list​ contains a ​designated-initializer-list​, ​T ​ shall be an aggregate class. The
ordered ​identifier​s in the ​designator​s of the ​designated-initializer-list​ shall form a subsequence
of the ordered ​identifiers​ in the direct non-static data members of T. Aggregate initialization is
performed ([dcl.init.aggr]). [Example:

 struct A { int x; int y; int z; };
 A a{.y = 2, .x = 1}; ​// error; designator order does not match declaration order
 A b{.x = 1, .z = 2}; ​// ok, b.y initialized to 0

— end example]

Add a new paragraph to 11.6.1 [dcl.init.aggr]:

The initializations of the elements of the aggregate are evaluated in the element order. That is,
all value computations and side effects associated with a given element are sequenced before
those of any element that follows it in order.

Drafting note: unlike 11.6.4/4, this also covers the initialization of elements for which no
initializer is explicitly provided.

Change in 11.6.1 [dcl.init.aggr]p3 and split it into two paragraphs:

When an aggregate is initialized by an initializer list as specified in 11.6.4, the elements of the
initializer list are taken as initializers for the elements of the aggregate​, in order​.​ The ​explicitly
initialized elements​ of the aggregate are determined as follows:

● If the initializer list is a ​designated-initializer-list​, the aggregate shall be of class type, the
identifier​ in each ​designator ​shall name a direct non-static data member of the class, and
the explicitly initialized elements of the aggregate are the elements that are, or contain,
those members.

● If the initializer list is an ​initializer-list​, the explicitly initialized elements of the aggregate
are the first ​n​ elements of the aggregate, where ​n​ is the number of elements in the
initializer list.

● Otherwise, the initializer list must be ​{} ​, and there are no explicitly initialized elements​.

Each ​For each explicitly initialized​ element​:

● If the element is an anonymous union object and the initializer list is a
designated-initializer-list, the anonymous union object is initialized by the
designated-initializer-list​ ​{ ​ ​D​ ​} ​, where ​D​ is the ​designated-initializer-clause​ naming a
member of the anonymous union object. There shall be only one such
designated-initializer-clause​.

● Otherwise, the element ​is copy-initialized from the corresponding ​initializer-clause​ ​or the
brace-or-equal-initializer​ of the corresponding ​designated-initializer-clause​. If ​the
initializer-clause is an expression​ ​that initializer is of the form ​assignment-expression​ or
= ​ ​assignment-expression​ and a narrowing conversion (11.6.4) is required to convert the
expression, the program is ill-formed. [Note: If an initializer​-clause​ is itself an initializer
list, the element is list-initialized, which will result in a recursive application of the rules in
this section if the element is an aggregate. — end note]

[Example: …]

Change 11.6.1 [dcl.init.aggr]p8 as follows, and move it to immediately after the above
paragraphs

For ​If there are fewer initializer-clauses in the list than there are elements in​ a non-union
aggregate, ​then ​each element ​that is​ not ​an​ explicitly initialized ​element​ is initialized as follows:
...
[Example: ...

 struct A {
 string a;
 int b = 42;
 int c = -1;
 };

A{.c=21} ​ has the following steps:

1. Initialize a with {}
2. Initialize b with = 42
3. Initialize c with = 21

]

Change 11.6.1 [dcl.init.aggr]p6 as follows

[Note: Static data members​, non-static data members of anonymous union members,​ and
anonymous bit-fields are not considered elements of the aggregate. — end note]

Change 11.6.1 [dcl.init.aggr]p7 as follows

An ​initializer-list​ is ill-formed if the number of ​initializer-clauses​ exceeds the number of elements
to initialize​ ​of the aggregate.

Change 11.6.1 [dcl.init.aggr]p16 as follows

When a union is initialized with a​n​ ​brace-enclosed​ initializer​ list​, ​there shall not be more than
one explicitly initialized element.​ ​the braces shall only contain an initializer-clause for the first
non-static data member of the union​. [Example:
 union u { int a; const char* b; };
 u a = { 1 };
 u b = a;
 u c = 1; // error
 u d = { 0, "asdf" }; // error
 u e = { "asdf" }; // error
 u f = { .b = "asdf" };
 u g = { .a = 1, .b = "asdf" }; // error
]

Add new paragraph after 16.3.3.1.5 [over.ics.list]p1 as follows

If the initializer list is a ​designated-initializer-list​, a conversion is only possible if the parameter
has an aggregate type that can be initialized from the initializer list according to the rules for
aggregate initialization ([dcl.init.aggr]), in which case the implicit conversion sequence is a
user-defined conversion sequence whose second standard conversion sequence is an identity
conversion. [Note: Aggregate initialization does not require that the members are declared in
designation order. If, after overload resolution, the order does not match for the selected
overload, the initialization of the parameter will be ill-formed ([dcl.init.list]). [Example:
 struct A { int x, y; };
 struct B { int y, x; };
 void f(A a, int); ​// ​#1
 void f(B b, ...); ​// ​#2
 void g(A a); ​// ​#3
 void g(B b); ​// ​#4
 void h() {
 f({.x = 1, .y = 2}, 0); ​ ​// OK; calls​ #1
 f({.y = 2, .x = 1}, 0); ​// error: selects​ #1 ​, initialization of ​a ​ fails
 ​// due to non-matching member order ([dcl.init.list])
 g({.x = 1, .y = 2}); ​ ​// error: ambiguous between ​#3 ​ and ​#4
 }
— end example] — end note]

Change 16.3.3.1.5 [over.ics.list]p2 as follows

Otherwise, ​if the parameter type is an aggregate [...]

Add new section to C.1.7 [diff.decl] as follows

[dcl.init.aggr]
Change:​ In C++, designated initialization support is restricted compared to the corresponding
functionality in C. In C++, designators for non-static data members must be specified in
declaration order, designators for array elements and nested designators are not supported,
and designated and non-designated initializers cannot be mixed in the same initializer list.
Example:
struct A { int x, y; };
struct B { struct A a; };
struct A a = {.y = 1, .x = 2}; ​// valid C, invalid C++
int arr[3] = {[1] = 5}; ​// valid C, invalid C++
struct B b = {.a.x = 0}; ​// valid C, invalid C++
struct A a = {.x = 1, 2}; ​// valid C, invalid C++

Rationale:​ In C++, members are destroyed in reverse construction order and the elements of
an initializer list are evaluated in lexical order, so field initializers must be specified in order.
Array designators conflict with ​lambda-expression​ syntax. Nested designators are seldom used.
Effect on original feature:​ Deletion of feature that is incompatible with C++.
Difficulty of converting:​ Syntactic transformation.
How widely used:​ Out-of-order initializers are common. The other features are seldom used.

