Master new graph ML techniques through updated examples using PyTorch Geometric and Deep Graph Library (DGL)
Explore GML frameworks and their main characteristics
Leverage LLMs for machine learning on graphs and learn about temporal learning
Purchase of the print or Kindle book includes a free PDF eBook
Description
Graph Machine Learning, Second Edition builds on its predecessor’s success, delivering the latest tools and techniques for this rapidly evolving field. From basic graph theory to advanced ML models, you’ll learn how to represent data as graphs to uncover hidden patterns and relationships, with practical implementation emphasized through refreshed code examples. This thoroughly updated edition replaces outdated examples with modern alternatives such as PyTorch and DGL, available on GitHub to support enhanced learning.
The book also introduces new chapters on large language models and temporal graph learning, along with deeper insights into modern graph ML frameworks. Rather than serving as a step-by-step tutorial, it focuses on equipping you with fundamental problem-solving approaches that remain valuable even as specific technologies evolve. You will have a clear framework for assessing and selecting the right tools.
By the end of this book, you’ll gain both a solid understanding of graph machine learning theory and the skills to apply it to real-world challenges.
Who is this book for?
This book is for data scientists, ML professionals, and graph specialists looking to deepen their knowledge of graph data analysis or expand their machine learning toolkit. Prior knowledge of Python and basic machine learning principles is recommended.
What you will learn
Implement graph ML algorithms with examples in StellarGraph, PyTorch Geometric, and DGL
Apply graph analysis to dynamic datasets using temporal graph ML
Enhance NLP and text analytics with graph-based techniques
Solve complex real-world problems with graph machine learning
Build and scale graph-powered ML applications effectively
Aldo Marzullo received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2016. During his studies, he developed a solid background in several areas, including algorithm design, graph theory, and machine learning. In January 2020, he received his joint Ph.D. from the University of Calabria and Université Claude Bernard Lyon 1 (Lyon, France), with a thesis titled Deep Learning and Graph Theory for Brain Connectivity Analysis in Multiple Sclerosis. He is currently a postdoctoral researcher and collaborates with several international institutions.
Enrico Deusebio is currently working as engineering manager at Canonical, the publisher of Ubuntu, to promote open source technologies in the data and AI space and to make them more accessible to everyone. He has been working with data and distributed computing for over 15 years, both in an academic and industrial context, helping organizations implement data-driven strategies and build AI-powered solutions. He has collaborated and worked with top-tier universities, such as the University of Cambridge, University of Turin, and the Royal Institute of Technology (KTH) in Stockholm, where he obtained a Ph.D. in 2014. He holds a B.Sc. and an M.Sc. degree in aerospace engineering from Politecnico di Torino.
Claudio Stamile received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2013 and, in September 2017, he received his joint Ph.D. from KU Leuven (Leuven, Belgium) and Université Claude Bernard Lyon 1 (Lyon, France). During his career, he developed a solid background in AI, graph theory and machine learning with a focus on the biomedical field.
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.