Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building AI Agents with LLMs, RAG, and Knowledge Graphs

You're reading from   Building AI Agents with LLMs, RAG, and Knowledge Graphs A practical guide to autonomous and modern AI agents

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781835087060
Length 560 pages
Edition 1st Edition
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Salvatore Raieli Salvatore Raieli
Author Profile Icon Salvatore Raieli
Salvatore Raieli
Gabriele Iuculano Gabriele Iuculano
Author Profile Icon Gabriele Iuculano
Gabriele Iuculano
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: The AI Agent Engine: From Text to Large Language Models
2. Chapter 1: Analyzing Text Data with Deep Learning FREE CHAPTER 3. Chapter 2: The Transformer: The Model Behind the Modern AI Revolution 4. Chapter 3: Exploring LLMs as a Powerful AI Engine 5. Part 2: AI Agents and Retrieval of Knowledge
6. Chapter 4: Building a Web Scraping Agent with an LLM 7. Chapter 5: Extending Your Agent with RAG to Prevent Hallucinations 8. Chapter 6: Advanced RAG Techniques for Information Retrieval and Augmentation 9. Chapter 7: Creating and Connecting a Knowledge Graph to an AI Agent 10. Chapter 8: Reinforcement Learning and AI Agents 11. Part 3: Creating Sophisticated AI to Solve Complex Scenarios
12. Chapter 9: Creating Single- and Multi-Agent Systems 13. Chapter 10: Building an AI Agent Application 14. Chapter 11: The Future Ahead 15. Index 16. Other Books You May Enjoy

Classifying AI agents

In this section, we will discuss how best to classify agents and go into more detail about how such a complex system learns. The first classification is between agents that move only in a virtual environment and embodied agents.

Digital agents are confined to a virtual environment. Again, we have varying degrees of interaction with the virtual universe. The simplest agents have interaction with a single user. For example, an agent can be programmed in a virtual environment as a Jupyter notebook, and although it can search the internet, it has rather small, and therefore primarily passive, interactions. There are two subsequent levels of extension:

  • Action agents perform actions in a simulated or virtual world. Gaming agents interact with other agents or users. These agents usually have a goal (such as winning a game) and must interact with other players to succeed in achieving their goal. A reinforcement learning algorithm is usually used to train the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime