Domain-specific fine-tuning techniques
When fine-tuning LLMs for specific domains, we often need to adapt our approach. Let’s look at an example of domain-specific fine-tuning for a scientific corpus. The following code implements domain-specific fine-tuning for scientific text using custom dataset preparation and training configuration:
- First, we set up the dataset preparation for scientific text with a specified block size and language modeling collator:
import torch from transformers import ( TextDataset, DataCollatorForLanguageModeling ) def prepare_scientific_dataset(file_path, tokenizer): dataset = TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=128, ) data_collator = DataCollatorForLanguageModeling( &...