Implementing transfer learning and fine-tuning
We will use the following code blocks to demonstrate transfer learning with GPT-2, handling model initialization, data processing, and the fine-tuning workflow. We will use the Transformers library and WikiText dataset to fine-tune a pre-trained language model:
- First, we load and initialize the GPT-2 model and tokenizer with configured padding:
def load_model_and_tokenizer(model_name="gpt2"): model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token return model, tokenizer
- Then, the following code block manages dataset loading and text tokenization with a sequence length of
512
:def prepare_dataset(dataset_name="wikitext", dataset_config="wikitext-2-raw-v1" ): dataset...