Version control for LLM checkpoints
Version control for LLM checkpoints can help with managing different versions of your model during the development process. Here’s a simple implementation:
import os import json import shutil class VersionControlledLLMTrainer(DistributedLLMTrainer): def __init__( self, model, optimizer, checkpoint_dir='checkpoints', version_file='versions.json' ): super().__init__(model, optimizer, checkpoint_dir) self.version_file = version_file self.versions = self.load_versions() def load_versions(self): if os.path.exists(self.version_file): ...