Integrating data versioning in training workflows
To make data versioning an integral part of your LLM training workflow, you need to incorporate version checking and logging into your training scripts. Here’s an example of how you might do this:
import json from dataclasses import dataclass from typing import Dict, Any @dataclass class DatasetInfo: version_hash: str metadata: Dict[str, Any] def load_dataset_info(filename: str) -> DatasetInfo: with open(filename, 'r') as f: data = json.load(f) return DatasetInfo(data['version_hash'], data['metadata']) def train_llm(model, dataset, dataset_info: DatasetInfo): # Log dataset version information print( f"Training model with dataset version: " ...