Designing graph RAG architectures for LLMs
To design a graph RAG system, we need to integrate our knowledge graph with the retrieval and generation components:
import networkx as nx from sentence_transformers import SentenceTransformer import torch class GraphRAG: def __init__(self, kg: KnowledgeGraph, model_name: str): self.kg = kg self.model = SentenceTransformer(model_name) self.graph = self.build_networkx_graph() self.node_embeddings = self.compute_node_embeddings() def build_networkx_graph(self): G = nx.DiGraph() for node_id, properties in self.kg.nodes.items(): G.add_node...