Data input and preprocessing
Efficient data handling is crucial for LLM training, as we discussed in Part 1 of this book. Here, let’s explore advanced techniques for data input and preprocessing:
- Import the required Python packages:
from datasets import load_dataset, concatenate_datasets from transformers import AutoTokenizer from torch.utils.data import DataLoader import numpy as np
- Load and combine multiple datasets:
wiki_dataset = load_dataset("wikipedia", "20220301.en", split="train") books_dataset = load_dataset("bookcorpus", split="train") # Combine datasets combined_dataset = concatenate_ datasets([wiki_dataset, books_dataset])
- Initialize the tokenizer and perform
preprocess
:tokenizer = AutoTokenizer.from_pretrained("gpt2") def preprocess_function(examples): # Tokenize the texts tokenized = tokenizer( ...