Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building AI Agents with LLMs, RAG, and Knowledge Graphs

You're reading from   Building AI Agents with LLMs, RAG, and Knowledge Graphs A practical guide to autonomous and modern AI agents

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781835087060
Length 560 pages
Edition 1st Edition
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Salvatore Raieli Salvatore Raieli
Author Profile Icon Salvatore Raieli
Salvatore Raieli
Gabriele Iuculano Gabriele Iuculano
Author Profile Icon Gabriele Iuculano
Gabriele Iuculano
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: The AI Agent Engine: From Text to Large Language Models
2. Chapter 1: Analyzing Text Data with Deep Learning FREE CHAPTER 3. Chapter 2: The Transformer: The Model Behind the Modern AI Revolution 4. Chapter 3: Exploring LLMs as a Powerful AI Engine 5. Part 2: AI Agents and Retrieval of Knowledge
6. Chapter 4: Building a Web Scraping Agent with an LLM 7. Chapter 5: Extending Your Agent with RAG to Prevent Hallucinations 8. Chapter 6: Advanced RAG Techniques for Information Retrieval and Augmentation 9. Chapter 7: Creating and Connecting a Knowledge Graph to an AI Agent 10. Chapter 8: Reinforcement Learning and AI Agents 11. Part 3: Creating Sophisticated AI to Solve Complex Scenarios
12. Chapter 9: Creating Single- and Multi-Agent Systems 13. Chapter 10: Building an AI Agent Application 14. Chapter 11: The Future Ahead 15. Index 16. Other Books You May Enjoy

RNNs, LSTMs, GRUs, and CNNs for text

So far, we have discussed how to represent text in a way that is digestible for the model; in this section, we will discuss how to analyze the text once a representation has been obtained. Traditionally, once we obtained a representation of the text, it was fed to models such as naïve Bayes or even algorithms such as logistic regression. The success of neural networks has made these machine learning algorithms outdated. In this section, we will discuss deep learning models that can be used for various tasks.

RNNs

The problem with classical neural networks is that they have no memory. This is especially problematic for time series and text inputs. In a sequence of words t, the word w at time t depends on the w at time t-1. In fact, in a sentence, the last word is often dependent on several words in the sentence. Therefore, we want an NN model that maintains a memory of previous inputs. An RNN maintains an internal state that maintains...

You have been reading a chapter from
Building AI Agents with LLMs, RAG, and Knowledge Graphs
Published in: Jul 2025
Publisher: Packt
ISBN-13: 9781835087060
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon