Why is checkpointing important?
Checkpointing is a common practice in LLM training due to the long duration and resource-intensive nature of the LLM training process.
Let’s implement a basic checkpointing system:
import torch from transformers import GPT2LMHeadModel, GPT2Config import os class LLMTrainer:     def __init__(         self, model, optimizer, checkpoint_dir='checkpoints'     ):         self.model = model         self.optimizer = optimizer         self.checkpoint_dir = checkpoint_dir         os.makedirs(checkpoint_dir, exist_ok=True)     def save_checkpoint(self, epoch, step, loss):         checkpoint = {         ...