Recovering from failures
Robust recovery mechanisms are crucial for LLM training. Let’s implement a system that can handle various types of failures:
import signal import sys class RobustLLMTrainer(EfficientLLMTrainer): def __init__( self, model, optimizer, checkpoint_dir='checkpoints', autosave_interval=15 ): super().__init__(model, optimizer, checkpoint_dir) self.autosave_interval = autosave_interval self.setup_signal_handlers() def setup_signal_handlers(self): signal.signal(signal.SIGINT, self.handle_interrupt) signal.signal(signal.SIGTERM, self.handle_interrupt...